
Security Analysis Of DGM and GM Group
Signature Schemes Instantiated With XMSS-T

Mahmoud Yehia(�), Riham AlTawy(�), and T. Aaron Gulliver

Department of Electrical and Computer Engineering, University of Victoria,
Victoria, BC, Canada.

mahmoudyehia@uvic.ca, raltawy@uvic.ca

Abstract. Group Merkle (GM) (PQCrypto 2018) and Dynamic Group
Merkle (DGM) (ESORICS 2019) are recent proposals for post quantum
hash-based group signature schemes. They are designed as generic
constructions that employ any stateful Merkle hash-based signature
scheme. XMSS-T (PKC 2016, RFC8391) is the latest stateful Markle
hash-based signature scheme where (almost) optimal parameters are
provided. In this paper, we show that the setup phase of both GM
and DGM does not enable their drop-in instantiation by XMSS-T,
thus limiting both designs to employing earlier XMSS versions with
sub-optimal parameters which negatively affects the performance of
both schemes. We provide a tweak to the setup phase of both GM and
DGM to tackle such a limitation and enable the adoption of XMSS-T.
Moreover, we analyze the bit security of DGM when instantiated with
XMSS-T and show that it is susceptible to multi-target attacks because
of its parallel Signing Merkle Trees (SMT) approach. More precisely,
when DGM is used to sign 264 messages, its bit security is 44 bits less
than that of XMSS-T. Finally, we provide a DGM variant that mitigates
multi-target attacks and show that it attains the same bit security as
XMSS-T.

Keywords: Digital signatures, Hash-based signature schemes, Group
signature schemes, Post-quantum cryptography, Merkle trees.

1 Introduction

A group signature scheme (GSS) incorporates N members into a signing scheme
with a single public key. GSS allows any group member to sign anonymously
on behalf of the whole group [16]. A group manager is assigned to perform
the system setup, reveal the identity of a given signer when needed, add new
members, and revoke memberships when required. Remote attestation protocols,
e-commerce, e-voting, traffic management, and privacy preserving techniques
in blockchain applications [8, 35, 3] are some of the applications that utilize
group signature schemes. There have been several proposals for group signature
schemes [14, 15, 8, 6, 28, 29]. However, the majority of them rely on number
theoretic assumptions that are not secure against post quantum attacks.

Currently, there is an imperative need to supersede the current public key
infrastructure by quantum-secure algorithms. Such a need is evidenced by the
current post-quantum cryptography standardization competition (PQC) run by
NIST [33]. GSS is one of the primitives of public key infrastructure which at-
tracted the researchers to work on to provide quantum security. The first post
quantum lattice-based group signature scheme [20] is introduced in 2010. Later
on, a number of lattice-based structures were introduced [25, 26, 30, 32, 27, 17].
Nevertheless, unlike the lattice-based signature schemes finalist candidates in
PQC, their group signature structures are not as efficient [36]. Code-based group
signature schemes were developed to provide another alternative for quantum
secure GSSs [1, 2, 19], but they come with very large signature sizes that are
order of Megabytes [4].

In 2018, El Bansarkhani and Misoczki introduced Group Merkle (GM), the
first post-quantum stateful hash-based group signature scheme [18]. A year
Later, Dynamic Group Merkle (DGM), the latest hash-based group signature
scheme, was introduced to solve some of the limitations of GM [12]. GM and
DGM provide quantum security with reasonable signature size which is in order
of KBytes and both are specified as general constructions that can be instan-
tiated with any stateful Merkle hash-based signature scheme. Accordingly, the
security analysis of both schemes included standard security notions of group
signature schemes (anonymity and full-traceability) [5, 13], but no bit-security
analysis was provided.

XMSS+ [21], XMSSMT [23], and XMSS-T [24] are stateful hash-based signa-
ture scheme that are proposed to tackle the performance drawbacks of Merkle
Signature Scheme (MSS) [31]. The last version of XMSS-T is described in In-
ternet Engineering Task Force (IETF) RFC8391 [22] where it provides (almost)
optimal parameters and it mitigates multi-target attacks.

Our contributions. In what follows, we summarize the contributions of this work.

- We show that the setup phase of both GM and DGM restricts them from being
directly instantiated by XMSS-T which negatively affects the performance of
both schemes because they may use earlier XMSS versions with sub-optimal
parameters..

- We introduce simple tweaks in GM and DGM setup phase that enable their
instantiation with XMSS-T.

- We analyze the bit-security of DGM when instantiated with XMSS-T and
show that it is vulnerable to multi-target attacks due to allowing multiple
signing trees to branch out from the same intermediate initial tree node. Con-
cretely, when the scheme is used to sign 264 messages under the same public
key (similar to NIST’s requirements in PQC [34]), DGM offers bit security
that is 44 bits less than that of the utilized Merkle signing scheme, i.e. 212-bit
security when instantiated with XMSS-T-SHA2 at 256-bit security

- We propose a DGM variant that mitigates the described multi-target attack
and show that such a variant maintains the same bit security as the utilized
Merkle signing scheme.

2

2 Preliminaries

In this section, we provide the security definitions of hash functions that will
be used throughout the paper, and introduce the notion of unforgeability in
group signature schemes. In addition to the standard one wayness, and strong
and weak collision resistance security notions, we consider security notions of
hash function families which have been introduced in [24, 9]. In what follows, let
n ∈ N be the security parameter, k = poly(n), m = poly(n), Hn = {HK(M) :
{0, 1}k × {0, 1}m → {0, 1}n be a keyed hash function family, K ∈ {0, 1}k is
the hash key, and M ∈ {0, 1}m is the message. Hash-based signature schemes
usually adopt parameterized hash functions with m, k ≥ n. Note that the success
probabilities of quantum adversaries are given assuming the Quantum Accessible
Random Oracle Model [7].

Definition 1 (Post-Quantum) Distinct-function, Multi-target Second
Preimage Resistance (PQ-DM-SPR) Given a (quantum) adversary A who
is provided with p message-Key pairs (Mi,Ki), 1 ≤ i ≤ p, the success probability
that A finds a second preimage of any pair (j), 1 ≤ j ≤ p using the corresponding
hash function key (Kj) is given by.

SuccPQ-DM-SPR
Hn,p

(A) = Pr[Ki ← {0, 1}k;Mi ← {0, 1}m, 1 ≤ i ≤ p;
(j,M ′)← A((K1,M1), . . . , (Kp,Mp)) :

M ′ 6= Mj ∧H(Kj ,Mj) = H(Kj ,M
′)]

A generic attack by a classical (resp. quantum) DM-SPR adversary who makes
qh queries to an n-bit hash function has a success probability of qh+1

2n (resp.

Θ((qh+1)2

2n)). Note that if the keys of the hash function family are chosen ran-
domly, then the above security notion in Definition 1 is referred to by Multi-
Function, Multi-target Second-Preimage Resistance (MM-SPR)).

Definition 2 (Post-Quantum) Multi-target Extended Target Collision
Resistance (PQ-M-eTCR) Given a (quantum) adversary A who is given a
target set of p key-message pairs (Ki,Mi), 1 ≤ i ≤ p, and they are required to
find a different message-key pair (possibly the same key) whose image collides
with any of the pairs in the target set. The success probability of A is given by

SuccPQ-M-eTCR
Hn,p

(A) = Pr[Ki ← {0, 1}k;Mi ← {0, 1}m, 1 ≤ i ≤ p;
(j,K ′,M ′)← A((K1,M1), . . . , (Kp,Mp)) :

M ′ 6= Mj ∧H(Kj ,Mj) = H(K ′,M ′)]

A generic attack by a classical (quantum) M-eTCR adversary who is given p
targets and makes qh queries to an n-bit hash function has a success probability

of p(qh+1)
2n + pqh

2k
(resp. Θ(p(qh+1)2

2n +
pq2h
2k

)) when k ≥ n.

Definition 3 ((Post-Quantum) M-eTCR with Nonce (PQ-NM-eTCR))
Given a (quantum) adversary A who is given a target set of p key-message-
nonce tuples (Ki,Mi, i), 1 ≤ i ≤ p, and they are required to find a different

3

key-message-nonce tuple (K ′,M ′, j) whose image collides with the j-th tuple in
the target set (possibly the same key). The success probability of A is given by.

SuccPQ-NM-eTCR
Hn,p

(A) = Pr[Ki ← {0, 1}k;Mi ← {0, 1}m, 1 ≤ i ≤ p;
(K ′,M ′, j)← A((K1,M1, 1), . . . , (Kp,Mp, p)) :

M ′ 6= Mj ∧H(Kj ||j,Mj) = H(K ′||j,M ′)]

A generic attack by a classical (quantum) NM-eTCR adversary who is given p
targets and makes qh queries to an n-bit hash function has a success probability

of (qh+p)
2n + pqh

2k
(resp. Θ((qh+p)2

2n +
pq2h
2k

)) when k ≥ n

Definition 4 ((Post Quantum) Pseudorandom Function (PQ-PRF))
Hn is called a PRF function family, if it is efficiently computable, and for any
(quantum) adversary A who can query a black-box oracle O that is initialized
with either Hn function or a random function G where G : {0, 1}m → {0, 1}n,
the success probability of A in distinguishing the output of O by determining
which function it is initialized with, is negligible. Such a success probability is
given by:

Succ PQ-PRF
Hn

(A) =| Pr[O ← Hn : AO(·) = 1]− Pr[O ← G : AO(·) = 1] |

A generic attack by a classical (resp. quantum) PQ-PRF adversary who makes

qh queries to an Hn has a success probability of qh+1
2n (resp. Θ((qh+1)2

2n)).

Unforgeability in group signature schemes. A basic security notion of any
(group) digital signature scheme is that signatures cannot be forged. More pre-
cisely, it is computationally infeasible for an adversary A who does not know
the secret key and is allowed unrestricted queries to the signing oracle to gen-
erate a message signature pair (M ′,Σ′) that passes as valid by the verification
algorithm.

In what follows, we give the definition of the unforgeability game
EXPforge

GS,A (n,N) for a group signature scheme, GS with N members and security
parameter n, Such a game is described by Bellare et al. in [5] as an adaptation
from the traceability game where A is not allowed to corrupt members. Intu-
itively, A is successful in winning EXPforge

GS,A if the forged message is either traced
to a group member or cannot be traced to any member.

Definition 5 (Unforgeability) A group signature scheme GS is unforgeable
if for any ppt adversary A that is given unrestricted access to the signing and
opening oracles, A is not able to generate a valid signature for a message that
was not queried before. A has a negligible advantage in the experiment ExpforgGS,A
as defined in Figure 1

AdvforgGS,A(n,N) =| Pr[ExpforgGS,A(n,N) = 1] |≤ negl(n)

4

ExpforgGS,A(n,N)

- (GPK, sk∗)← G.KGen(1n, 1N)
- Unrestricted queries:

* Sign(M, ·)
* G.Open(M,Σ)

- Generate (M ′,Σ′)
- If G.V erify(Σ′,M ′, gpk) == 1 Return 1
Else Return 0

Fig. 1: Unforgeability experiment

3 Specification of Related Schemes

In this section we provide a brief description of XMSS-T, GM, and DGM, the
related signing schemes used throughout this paper. We only provide the details
of the procedures that are relevant to our analysis. For more details, the user is
referred to [24, 22, 18, 12].

3.1 Extended Merkle Signature Scheme-Tightened (XMSS-T)

XMSS-T is a multi Merkle tree construction where the trees leaf nodes are the
public keys of the Winternitz One-Time Signature Scheme with Tightened se-
curity (WOTS-T) [10]. In what follows, we consider the specification of one tree
instance of XMSS-T, because this how it is used in GM and DGM. XMSS-T
has a public addressing mapping, ADRS that maps a public seed, pk.seed, a
leaf/internal node index, i, and a level j to generate (distinct) new hash ran-
domizer, r, and bit-mask, q, for each hash call in the scheme (the hashing in
the WOTS-T scheme and the Merkel tree hashing). Such a distinct random-
izer enables the scheme to mitigate multi-target attacks. Precisely, a Merkle
tree of height h, has 2h leaf nodes (WOTS-T.pk), the i-th node at level j is
denoted by Xi,j , where 0 ≤ i ≤ 2h−j , 0 ≤ j ≤ h. The internal nodes are
generated by Xi,j = H(ri,j , (X2i,j−1||X2i+1,j−1) ⊕ qi,j), where ri,j and qi,j are
the used hash randomizer and bit-mask generated by the addressing scheme
(ri,j , qi,j)← ADRS(pk.seed, i, j). XMSS-T addressing scheme (see Appendix A
for details) takes the leaf index, i, and calculates j according to the hashing sub-
structure i.e., OTS hash chains, L-tree hashing, or Merkle tree hashing, then,
it generates the required hash randomizer and bit mask. For simplicity, we let
ADRS takes the node level, j as input.

The nodes at level 0, Xi,0, are the leaf nodes, and they are the public keys of
the WOTS-T which also utilizes the addressing scheme, ADRS to evaluate the
required hash randomizers and bit masks for its hashing. For details of WOTS-
T signing scheme and the addressing schemes, the reader is referred to [24] and
Appendix A, respectively. Figure 2 depicts a simplified example of an XMSS-T
with one tree of 8 signing leaves L0, · · · , L7. A signature by the leaf L2 (colored
in black) has all the gray nodes in its authentication path.

3.2 Group Merkle (GM)

Group Merkle (GM) is the first post-quantum hash-based group signature
scheme. It is a one Merkle tree construction that can be instantiated by any

5

Leaf Node
OTS.pk

Internal Node

Level0

Level2

Level3

Level1

PK.Root

L0 L3 L4 L5 L6 L7L1 L2

PK.Root

Fig. 2: A one layer XMSS-T, where the leaf nodes are the WOTS-T public keys.
The nodes colored in gray are the authentication path for signing with the leaf
node L2.

stateful one-tree Merkle hash-based signature scheme that employs a One Time
Signing (OTS) scheme as the underlying signing algorithm. The group manager
in GM is responsible for the setup procedure of N group members. In such a
phase, a member j, 1 ≤ j ≤ N , generates their own B OTS keys and sends the
corresponding public keys (OTS.pk(j−1)B+1, OTS.pk(j−1)B+2, . . . , OTS.pkjB) to
the group manager who labels all the received NB keys from the N members
by (1, 2, · · · , NB), where each consecutive (j − 1)B + 1, (j − 1)B + 2, . . . , jB set
of keys belongs to the j-th member.

To ensure signer anonymity, the OTS public keys are shuffled by
encrypting the corresponding labels by a symmetric encryption algo-
rithm, posi = Enc(i, skgm), where skgm is the group manager’s se-
cret key, and 1 ≤ i ≤ NB, thus the group manager has the pairs
(OTS.pk1, pos1), · · · , (OTS.pkN ·B , posN ·B). The pairs are reordered in an as-
cending order of the encrypted positions to perform the pair permutation. Then
the GM tree is constructed where the leaf node, denoted by Li = Xi,0 contains
the pair (OTS.pkj , posj) and i is the new permuted position of the OTS.pkj . Ac-
cordingly the p-th node at level 1 is calculated by Xp,1 = H(X2p,0||X2p+1,0) =
H(OTS.pkx, posx||OTS.pkz, posz) for 0 ≤ p ≤ NB

2 − 1. i.e., L2p = X2p,0 =
(OTS.pkx, posx) and L2p+1 = X2p+1,0 = (OTS.pkz, posz) because after the per-
mutation, position x is mapped to 2p and position z is mapped to 2p+1. Hashing
neighboring nodes continues up the levels until the tree root is evaluated which
is the group’s public key GM.gpk. Note that the encrypted position is included
in the signature, and is used by to group manager to reveal the identity of the
signer. Figure 3 shows a simplified example of a GM tree of two members colored
in red and blue, each has 2 OTS key pair.

3.3 Dynamic Group Merkle (DGM)

DGM [12] combines two types of Merkle trees, one Initial Merkle Tree (IMT) and
multiple Signing Merkle Trees (SMT). The IMT has a height of 20 and random
values for its leaves in order to build the tree whose root is the group public
key DGM.gpk. SMTs are of variable height and their leaves are OTSs which
are used by group members to sign messages. Initially, a group member asks the

6

Internal Node

Level0

Level2

Level1

GM.gpk

pk0 pos0 pk1 pos1

GM.gpk

posi

X0,1 X1,1

Leaf node Xi,0

X0,0 X1,0 X2,0 X3,0

pk2 pos2 pk3 pos3

OTS.pki

Fig. 3: GM with two members colored in red and blue, each of two signing leaves,
The leaf Permutation is done by sorting the encrypted positions.

group manager for B OTS signing keys, the group manager randomly choose
B internal nodes from the IMT, i.e., nodes at levels 1, 2, . . . , 19, and assigns an
OTS from each SMT that is linked to these internal node. If all the OTSs of an
existing SMT are assigned or an IMT internal node does not have an SMT yet,
then a new SMT is generated. The height of each SMT equals to the level of the
internal node that it is linked to.

SMT generation: The SMT is constructed in the same manner as the GM tree.
However, in DGM, the OTS secret and public key pairs are generated by the
group manager and the whole SMT is built without inputs from group members.
Let OTS.pki denote the i-th OTS public key, 0 ≤ i ≤ z where z denotes the total
number of signatures supported by the scheme. Let i = (v, u) where u denotes
the OTS number within the v-th SMT.

All the OTS public keys are generated and indexed by DGM.i = (v, u).
Such indexes are then encrypted with a symmetric encryption algorithm to
generate DGM.posi = Enc(DGM.i, skgm), where skgm is the group manger
secret key. The OTS public keys are then shuffled by sorting the encrypted
positions DGM.pos. Afterwards, the SMT leaves are generated, precisely, the
j-th SMT leaf node is the hashing of the concatenation of the i-th OTS pub-
lic key and their encrypted position, Lj = H(OTS.pki||DGM.posi), where j is
the new position of the the i-th OTS after the permutation. These leaves are
used to build the SMT and evaluate its root rSMT which is then linked to an
IMT internal node called “fallback node”, Fn, using symmetric encryption al-
gorithm. More precisely, rSMT , is linked to Fn by evaluating the fallback key as
Fk = Dec(Fn, rSMT) which is included in the signature. Note that the verifier
has to communicate with the group manager to check the validity of the received
Fk, then calculates Fn = Enc(Fk, rSMT) to complete the verification process.
After all the leaves of an SMT are used, a new SMT is generated and linked to
the same Fn. Note that, different SMTs linked to the same fallback node Fn,
have different fallback keys.

7

Figure 4 depicts a simplified example of DGM, where the IMT, colored
in blue, is of height 4. The figure depicts one SMT colored in red which
is linked to the IMT first internal node, Fn = X0,3, at level 3. When
L2 is used to sign a message M , the resulting signature is given by Σ =
(indx,OTS.σindx, DGM.posi, Auth), where indx = 2 is the signing leaf in-
dex with respect to the IMT to enable calculating which node is concate-
nated on its right and left in both the SMT and IMT from the authentica-
tion path in the verification process, OTS.σindx denotes the OTS signature by
the leaf index indx, and Auth = AuthSMT , Fk,AuthIMT , where AuthSMT =
L3, SMT.X0,1, SMT.X1,2 is the SMT authentication path (colored in pink), and
AuthIMT = IMT.X1,3, colored in light blue, is the IMT authentication path for
the fallback node Fn.

IMT root

IMT leaf

Internal Node

SMT root

SMT leaf

Fallback key
FK

DGM.gpk

Fk = Dec(Fn, rSMT)

rSMT

Fn = X0,3

L3L2

Level0

Level2

Level3

Level4

Level1

Fig. 4: DGM.

4 Instantiating GM And DGM with XMSS-T

In both GM and DGM, the signing leaves which contain the public keys of the
used OTS of the group members, must be generated first then they are per-
muted. Afterwards, the Merkle tree (SMT in DGM) is built using the permuted
leaves. In GM, the group members themselves generate their OTS keys and send
the corresponding OTS public keys to the group manager who permutes them,
then builds the GM tree. Finally, the group manager distributes all the GM tree
singing leaves on all the members. On the other hand, in DGM, the group man-
ager generates the OTSs on behalf of the group members, evaluate the signing
leaves and permutes them, then constructs the SMTs, and assigns at random
OTSs from randomly chosen SMTs.

XMSS-T is the latest stateful MSS variant and has (almost) optimal parameters
when it is compared to the other MSS variants which translates to smaller signa-
ture. For instance, at the same parameters (the used hash function is SHA-256,
the Winternetiz parameter w=16, tree height =20), the bit security of XMSS-T
(resp. XMSS [11]) is 256 (resp. 196). At the same bit security of 196, XMSS-T

8

(resp. XMSS) has a signature size of 14,328 (resp. 22,296) bits. XMSS-T uses
WOTS-T as the underlying OTS signing scheme, which requires the signing leaf
index, i, within the Merkle tree to generate the OTS public keys. More precisely,
XMSS-T uses an addressing scheme that utilizes the signing leaf index within
the Merkle tree as input to generate a distinct hash randomizer and bit mask
for each hash call in all the hash chains of the WOTS-T [24] (see Appendix
A). These hash randomizers and bit masks are used in evaluating the WOTS-T
public keys which represent the signing leaves, see Section 3.1.

Instantiating GM and DGM by XMSS-T is not directly achievable because
in the specification of both schemes, a signing leaf index, i is known only after its
corresponding OTS public key has been generated and the associated leaf gets
permuted, while in XMSS-T, WOTS-T requires the leaf index, i to evaluate the
OTS public key and generate its corresponding leaf. One solution is to employ
an earlier XMSS version with OTS variant that does not require the position of
the leaf within the Merkle tree to evaluate the OTS public keys. Such a solution
results in using OTS with larger parameters than WOTS-T which negatively
affects the performance of the whole group signature scheme.

GM and DGM with XMSS-T. We provide a tweak in the the setup phase
in both GM and DGM which enables their instantiation with XMSS-T. In GM,
the setup phase is interactive so we add an extra communication step, between
the group manager and the group members where the permuted indexes are first
sent to the members who can then generate their WOTS-T public keys. More
precisely, the permutation in GM is done by encrypting a given position that is
associated with an OTS public key, however, the encryption itself is independent
from the value of the public key, i.e., posi = Enc(i, skgm). Accordingly, the
group manger can initially permute the indexes of the leaves for all the group
members before the OTS keys are generated. Afterwards, the permuted indexes
are assigned to group members in a similar manner as in the original setup phase
(see Section 3.2). Each group member uses the assigned indexes within the whole
tree as an input to the WOTS-T addressing scheme, ADRS, to generate the
required hash randomizers and bitmasks which are required to generate their
WOTS-T public keys. Finally, the WOTS-T public keys are sent back to group
manager who constructs the GM tree using XMSS-T.

In DGM, no extra communication is needed because the group manger gener-
ates the group members OTS signing keys and their corresponding public keys.
Accordingly, the manager may permute the indexes by symmetric encryption
first then generate the OTS public keys using the permuted indexes. In other
words, the specification of the setup phase stays the same with only swapping
the order of permutation and OTS key generation.

5 DGM with XMSS-T Security Analysis

The security analysis in [12] analyzed DGM with respect to security notions
of group digital signature schemes, i.e., anonymity and traceability. However,
since DGM was not instantiated with a specific Merkle signing scheme, no bit
security analysis for its unforgeability was provided. In this section we analyze

9

the bit security of the unforgeability of DGM when it is instantiated with XMSS-
T. We note that the same analysis is valid if DGM is instantiated with earlier
XMSS versions. Henceforth, we refer to DGM when instantiated with XMSS-T
by simply DGM.

5.1 Multi-target attacks and XMSS-T

If an n-bit hash function is used once in a cryptographic primitive, with security
parameter λ, whose security is dependent on the second preimage resistance of
the hash function, then finding a second preimage of the one generated digest
requires 2n computations, thus it suffice that n = λ. However, if the same hash
function is used t times in the cryptographic primitive, i.e., an adversary has
access to t digests generated with the same hash function, then a second preimgae
may be obtained on any of these t targets with 2n/t computations. Assuming that
n = λ, the security of the scheme is reduced from n to n− log t. A naive remedy
to reach n-bit security is to use message digest of length n+ log t. Alternatively,
one may enforce that each hash application is different, such that each digest
out of the t targets is evaluated by a different hash function, thus finding a
second preimage for any function, i.e., using the same hash key, requires 2n

computations.

In XMSS-T, the addressing scheme, ADRS, generates a hash randomizer
and bit mask for each hash function call depending on the hash node index in
the tree or WOTS-T chain iteration. For a tree with height h, the i-th node
at level j is denoted by Xi,j , where 0 ≤ i ≤ 2h−j , 0 ≤ j ≤ h. ADRS is
given by (ri,j , qi,j)← ADRS(pk.seed, i, j), where ri,j and qi,j are the used hash
randomizer and bit-mask. The internal nodes are generated as follows,Xi,j =
H(ri,j , (X2i,j−1||X2i+1,j−1) ⊕ qi,j), i.e., Hri,j is unique for Xi,j . Accordingly, if
an adversary collected all the signatures supported by the scheme, each element
in the WOTS-T signatures and each node in any the authentication path is
generated by a different hash function. Consequently, finding a forgery requires
finding a second preimage of a given node using the corresponding hash function
where other nodes are not applicable targets anymore.

5.2 Multi-target attacks on DGM

DGM allows multiple SMT trees to branch out of any IMT internal node, “fall-
back node”. Accordingly, one may regard DGM as several overlapping parallel
trees with heights ranging from 1 to 20. The IMT tree is the only tree with
height 20 and the SMTs have heights ranging from 1 to 19.

To visualize such a structure, Figure 5 depicts a reduced DGM instance with
an IMT, colored in blue, of height 4 and 42 SMTs, colored red, yellow and green.
We assume uniform distribution in the selection of the IMT internal nodes from
which the linked SMT a key is assigned. Hence, each IMT internal node has the
same number of assigned OTS keys(i.e., leaf nodes), and the number of SMTs
per node in level j is double the number of SMTs per node in level (j+1). There
are 4, 2, and 1 SMTs branching out from internal IMT nodes at level 1, 2, and 3,
respectively, and their respective color indexes are green, yellow, and red. This
simplified example has 112 signing leaves which can be used to sign 112 messages

10

under the same public key (IMT root). Note that there is no maximum number
of SMTs so if more signing leaves are needed, new SMTs are constructed and
linked to a random internal node.

IMT root

IMT leaf

Internal Node

SMT root

SMT leaf

DGM.gpk

Fn

Level0

Level2

Level3

Level4

Level1

Fig. 5: Simplified example of DGM of height 4, with 42 SMTs, 112 signing leaves,
and fallback nodes are uniformly distributed across the internal IMT nodes

Following NIST’s recommendation in PQC, a signature scheme should be secure
to sign up to 264 messages under the same public key [33]. In what follows,
we assume that DGM is used to sign 264 messages. According to the design
specifications, when a group member needs B signing keys (leaves), the group
manager randomly selects B IMT internal nodes of the IMT and assigns to that
member the next unassigned OTS of each SMT linked to that internal node.
The total number of internal nodes excluding the root in an IMT of height 20
is given by 219 + 218 + · · · + 4 + 2 = 220 − 2 nodes. Recall that if the SMT
OTS leaves linked to any randomly chosen internal node are used up, then a
new SMT tree is generated, linked to that fallback node and one of its leaves
is assigned. Accordingly, assuming uniform distribution in the random fallback
node selection, to assign 264 OTS to the whole group members each IMT internal
node is chosen 264/(220 − 2) > 244 times. This means that each IMT internal
node at level j, where 1 ≤ j ≤ 19, has 244−(j−1)−1 = 244−j SMT trees each of
height j, i.e., 243 SMTs of height 1 for each IMT internal node at level 1, 242

SMTs of height 2 for each IMT internal node at level 2, up to 225 SMTs of height
19 for each IMT internal node at level 19.

When DGM is instantiated with XMSS-T, to enable verification of a given
signature, a DGM instance is seen as one tree of height 20 which means that
wherever the signing SMT location with respect to the IMT, the leave indexing is

11

in the set {0, 1, 220−1}, i.e., leaf indexing is considered relevant to the IMT where
the signing SMT is considered a part of the IMT. Such an indexing restriction
is required to enable the verifier to evaluate the position of the nodes in the
authentication path of the IMT up to its root (the pale blue nodes in Figure
4), which is essential in determining which nodes are concatenated on its right
and left. Consequently, different SMTs that are linked to the same IMT internal
node have the same indexing, and accordingly their parallel nodes at the same
position are evaluated with the same hash function, i.e., same hash randomizers
and bit masks.

For instance, in Figure 5, any 4 green SMT roots branching from the same
level 1 IMT blue node are evaluated with the same hash function as they share
the same index withing the IMT. Moreover, there are SMTs nodes that share
the same indexes and nodes of SMTs that are connected to upper IMT Internal
nodes, for example, in Figure 5, any 4 green SMT roots at IMT level one in-
termediate node share the same indexes with 2 intermediate yellow SMT nodes
and one intermediate red SMT node. Therefore, even though XMSS-T is secure
against multi-target attacks, employing several parallel instances of it with the
same indexing in the form of SMTs makes DGM vulnerable to multi-target at-
tacks. Intuitively, a forgery adversary who collected a set of message-signature
pairs, can group them in t-target sets that share common indexes, then such an
adversary is able to find another message whose digest collides with any of the
message digests in the set. Note that such sets have t messages with authentica-
tion paths that share nodes with the same IMT indexes, then with a complexity
2n/t forgery is obtained.

5.3 DGM bit security

Consider that DGM is used to sign 2y messages where y > 20. Accordingly,
each internal IMT node is chosen 2y/(220 − 2) times by the group manager, to
assign the next available OTS from the linked SMT. Assume an adversary A
is able to collect all the 2y signatures generated by the scheme. The signature
that is given by Σ = (R, indx,OTS.σindx, DGM.posi, Auth) is signed with the
i-th OTS key pair and has index indx relative to its IMT position, i.e., indx ∈
0, 1, . . . , 220 − 1 (see Section 3.3). A can then group the signatures along with
their corresponding messages in sets that share the same signing index, indx,
where each set is expected to have t target message-signatures pairs, i.e. a given
target set is denoted by ts = {(M0,Σ0), (M1,Σ1),. . . , (Mt−1,Σt−1)}. Assuming
uniform distribution in selecting IMT Fn positions, the number of targets t per
set is given by.

t =

j=19∑
j=1

2y/(220 − 2)

2j
< 2y−20 (1)

We assume a fully filled tree similar to the example in Figure 5 where all the
IMT internal nodes have equal number of assigned leaves, e.g., 2y/(24 − 2) =
112/14 = 8. Otherwise the index that has the maximum signatures is considered.
The maximum number of overlapping SMT nodes is given by 8

2 + 8
22 + 8

23 = 7,
hence t = 7.

12

In XMSS-T, to sign a message M , its message digest md is initially calculated
by md = Hmsg(R||DGM.root||indx,M) where Hmsg : {H(K,M) : {0, 1}m ×
{0, 1}∗ → {0, 1}n, R is the hash randomizer chosen by the signer, and index
is the leaf index relative to IMT. Since ts = has t (M,Σ) pairs all with the
same indx, then A can search for (M ′, R′) pair such that M ′ /∈ ts, and the
corresponding md′ collides with a message digest of any of the messages in ts.
Specifically, A finds (M ′, R′) such that

Hmsg(R′||DGM.root||indx,M ′) ∈ {(Hmsg(R0||DGM.root||indx,M0)), . . . ,

(Hmsg(Rt−1||DGM.root||indx,Mt−1)).}

Thus, A can successfully find a forgery for (M ′, R′) with probability of 2−n+log2 t.
Similar multi-taget attacks can be applied on the OTS public keys or authenti-
cation paths in ts. In what follows, we give the security reduction of DGM when
it is used to sign 2y messages, and y > 20. For completeness and consistency
with notations of XMSS-T [24], the hash functions used in different contexts
within the whole signature scheme are defined as follows.

– F : {F (K,M) : {0, 1}n × {0, 1}n → {0, 1}n, used in OTS hash chains.
– H : {H(K,M) : {0, 1}n × {0, 1}2n → {0, 1}n, used to calculate the Merkle

tree hash nodes.
– Hmsg : {H(K,M) : {0, 1}m × {0, 1}∗ → {0, 1}n, used to calculate the mes-

sage digest.
– Fn (resp. Fm) is a pseudorandom function family that takes a secret seed

as input and outputs the OTS secret keys (resp. the message digest hash
randomizer R) each of n bits (resp. m bits (m = n+ y)).

Theorem 1 For security parameter n ∈ N and parameters y, t as explaned
above, DGM is unforgeable against an adaptive chosen message attacks if

- F,H, and Th are PQ-DM-SPR hash function families,
- Fn and Fm are post-quantum pseudorandom function families,
- Hmsg is PQ-NM-eTCR hash function family.

The insecurity function, InSecPQ-forg(DGM, ξ, 2y), that describe the maximum
success probability over all adversaries running in time ≤ ξ against the PQ-
forg security of DGM and making a maximum of qs = 2y queries is bounded
by

InSecPQ-forg(DGM, ξ, 2y) ≤ InSecPQ-PRF(Fn, ξ) + InSecPQ-PRF(Fm, ξ)+

max[t · (InSecPQ-DM-SPR(H, ξ) + InSecPQ-DM-SPR(F, ξ) + InSecPQ-NM-eTCR(Hmsg, ξ))]

Proof. The proof is based on the approach of the proof given in [24]. Note that
we do not include the proof of Fn and Fm with respect to PQ-PRF because
they are not affected by instantiating DGM with XMSS-T, hence, the proof is
similar to that of XMSS-T in [24]. Assume, the adversary A is allowed to make

2y queries to a signing oracle running DGM with XMSS-T. A wins the EXPforge
GS,A

13

if they find a valid forgery (M ′,Σ′) where the message M ′ is not in the queried
set of 2y messages. A initially groups the signatures that share a given indx in
a set ts. Forgery occurs in three mutually exclusive cases

– The message digest of M ′ performed under indx results in M ′ being a second
preimage of one of the message digests of the messasages in ts. More precisely

md = Hmsg(R′||DGM.root||indx,M ′) = Hmsg(Rj ||DGM.root||indx,Mj)

Where Mj ∈ ts. This occurs with success probability equals t ×
InSecPQ-NM-eTCR(Hmsg), see Definition 3, i.e., the adversary A is able to
break the security of NM-eTCRof the used hash function.

– The OTS public key of the forged signature, OTS.pk′, exists in the
set of the OTS public keys of the signatures in ts, i.e., OTS.pk′ ∈
{OTS.pk0, · · · , OTS.pkt−1}. This occurs with success probability equals
t× InSecPQ-DM-SPR(F), see Definition 1, i.e., the adversary A is able to break
the security of DM-SPR of the used hash function F .

– The forged signature contains a node in the authentication path (X ′i,j the
i-th node in level j) that collide with a node at the same position in
the set of the authentication paths in ts (Xi,j the i-th node in level j),
e.g., H(ri,j , (X

′
2i,j−1||X ′2i+1,j−1)⊕qi,j) = H(ri,j , (X2i,j−1||X2i+1,j−1)⊕qi,j),

where the nodes (X ′2i,j−1, X
′
2i+1,j−1) are from the forged signature authenti-

cation path, the nodes (X2i,j−1, X2i+1,j−1) are from an authentication path
of a signature in ts, and ri,j , qi,j are the hash randomizer and bit mask used

for hashing. This occurs with success probability equals t×InSecPQ-DM-SPR(H)
(Definitions 1) Thus, the adversary A is able to break the security of second
preimage resistance of the used hash function H.

The above proof shows that if DGM is instantiated by the same parameters of
XMSS-T (RFC 8391), i.e., the the message digest length equals to the security
parameter n, then DGM does not achieve the bit security level as XMSS-T does.
Particularly, the bit security of DGM decreases by log2 t bits when compared to
that of XMSS-T. Concretely, for XMSS-T with a security parameter n = 256
and DGM is used to sign 264 messages, then DGM bit security decreases by
log2(

∑j=18
j=0 243−j) = 44 bits i.e., DGM achieves 212 bits of security. Therefore,

if DGM is required to achieve n bits of security, then XMSS-T should use a hash
function with output size of n + log2 t which decrease the signing performance
and the signature size increases. In the following section, we propose a solution
that allows DGM to attain optimal parameter as XMSS-T does.

6 DGM+ with Optimal Parameters

In this section we propose DGM+, a DGM-XMSS-T variant that mitigates multi-
target attacks (per index) as discussed in Section 5. We modify the addressing
scheme such that it outputs different hash randomizer and bit mask for the same
hash call location in different SMTs branching from the same IMT internal node,
and for overlapped SMTs that share the same indexing for some leaves.

14

The DGM public parameters contain two values DGM.root and DGM.seed,
where DGM.root is the IMT root (group public key), and DGM.seed is the
public key seed that is used in the XMSS-T addressing scheme, to generate the
hash randomizers ri and bit masks qi for each hash call at address, adi in the
IMT, i.e., (ri, qi) ← ADRS(DGM.seed, adi) . To enable opening, each SMT
leaf has (v, u) index which is encrypted to generate DGM.pos, where v refers
to the SMT number and u refers to the leaf index within the SMT. Note that
both u and v are secrets but DGM.pos is not because it is sent in the signature.
If we assume that the bit size of v is equal to the block length, b, of the used
encryption algorithm, then we can get ev as the first b bits from DGM.pos,
where ev denotes the encryption of v. Accordingly, we propose the following:

– IMT uses DGM.seed, directly, as the seed that is used to generate the hash
randomizers and bit masks for each hash call within the IMT.

– Each SMT utilizes (publicly calculated) different seed, SMT.seedv for its
hash randomizers and bit mask generation. SMT.seedv is unique for the
v-th SMT and is calculated by SMT.seedv = PRF (DGM.seed, ev)

For all SMTs that share indexing, we utilize different seed values with each
SMT and keep the XMSS-T addressing scheme unchanged [22] (see Section
A). Accordingly, different hash randomizers and bit masks are used at the
same IMT location but for different SMTs. Note that for signing, the IMT uti-
lizes DGM.seed in its construction, while the v-th SMT utilizes SMT.seedv =
PRF (DGM.seed, ev) in its construction. Let SMT.root.level denote the level
of the fallback node for a given signing SMT, the signature authentication path,
Auth contains the whole SMT authentication path, Auth.SMTv and the top
20−SMT.root.level nodes from the IMT. The latter authentication path starts
from the neighboring node of the fallback node linked to the SMT root and up
to DGM.root.

For verification, the verifier uses two seeds, DGM.seed for hash evaluations
of the authentication path from the fallback node and up. Moreover, the verifier
calculates STM.seedv = PRF (DGM.seed, ev) which is used in the WOTS-T
hash iterations and the SMT authentication path, Auth.SMTv, hash evaluations.

6.1 Message hashing with DM-SPR.

We have shown in Section 5 that DGM security depends on the NM-eTCR of the
used hash function, where the number of targets, t is considered per index. We
tweak the message hashing such that the security DGM depends on the DM-SPR
of the used hash function (Definition 1), to prevent multi-targets attacks. This
is achieved by using the message hash randomizer R = Fw−1(sk1) as follows.

md = Hmsg(R||DGM.root||idx,M) = Hmsg(Fw−1(sk1)||DGM.root||indx,M)

where Fw−1(sk1) is the last iteration, w − 1, of the first secret key of WOTS-T
(See [24] for the details of WOTS-T).

Rationale of message hashing tweak. The elements (R||DGM.root||idx)
serve as the hash key, where R is chosen at random for each new message hashing,

15

DGM.root is fixed. What if an adversary A who is given access to the signing
oracle, is able to get the hash randomizer R before querying the signing oracle?
Then A can search to find two messages that have the same image using the same
hash randomizer, R, i.e.,A looks for a collision. ThenA queries the singing oracle
by one message and the other message will have the same signature. Nevertheless,
as R is chosen randomly and it is known to the adversary just after querying
the the signing oracle, A works to find a second primage of any message of
the queried ones, under using any hash randomizer R′, i.e., for a valid forgery
the adversary needs to break the NM-eTCR security of the used hash function
function.

If we replace the hash randomizer R with the last iteration of the first secret
key of the used OTS, pk1 = Fw−1(sk1), see [24] for the details, which is known
to the public only after the signing, then R is not chosen at random but it will
be known to the public only after signing. Accordingly, for valid forgery, the ad-
versary is restricted to use the same message hash randomizer, R = Fw−1(sk1),
that is send in the signature, to find a message digest collision with the queried
set. Hence, the adversary is required to break the security of MM-SPR of the
used hash function, which has lower probability of success than breaking the
NM-eTCR security of the used hash function. Note that the last chain iteration
of the first OTS secret key, Fw−1(sk1), is not a public parameter and it is known
only after signing with the corresponding leaf node, i.e., it is different than the
OTS public key which is the root of L-tree.

In the verification procedure, the verifier checks if pk1 = Fw−a1−1(σ1)]
?
= R,

where σ1 is the first signature element in the OTS signature, otherwise, it return
invalid signature. Accordingly, for a valid forgery the adversary is required to find
a second primage using the same hash key Fw−1(sk1)||DGM.root||idx. Such an
adversary is required to break the MM-SPR of the hash function, see Definition 1.

Note that using the discussed message hashing to generate R from the OTS
public keys may be used to enable XMSS-T [9] to attain optimal parameters.
Specifically, when R is bound to specific signing leaf, then it suffices that R is
n-bits to provide n-bit security.

6.2 DGM and DGM+ comparison.

This section provides a comparison between DGM and DGM+ when both are
instantiated with XMSS-T to provide n bit security, and support 2y messages,
where y ≥ 20, and IMT height is 20.

Secret and public keys sizes. For DGM, to achieve a security parameter n,
the hash output size should be n+log2 t bits where t is given by Equation 1, thus
its tree nodes and the secret keys will also be n+ log2 t bits. DGM public keys is
the pair (pk.seed, IMT.root) each of n+ log2 t bits, and the secret key contains
sk.prf , that is used to generate the message hash randomizer, and sk.seed that
is used to generate the WOTS-T secret keys. Accordingly, the secret key size in
total is 2(n+ log2 t).

For DGM+, the size of tree nodes and the secret keys is n bits. DGM+

public key size is 2n bits, i.e., (pk.seed, IMT.root) each of n bits. The secret key

16

contains only sk.seed of n bits because it does not require sk.prf as the message
hash randomizer is the last hash iteration of the first secret key WOTS-T.

Signature size. DGM signature contains the message hash randomizer, R, the
leaf index, the encrypted position, the WOTS-T signature, the authentication
path, and the fall back key.

The signature element sizes in DGM+ is n-bits while in DGM is n+log2 t bits.
Also this has another impact, as the message digest size is increased accordingly
the number of WOTS-T elements, l, increases, which increases both the signature
size and the computational cost.

Table 1 provides the size of the keys and signature for both DGM+and DGM
at 128, 192, and 256-bit security when they are used for supporting up to 264

signatures, where the signature size = (22 + l)n + 4 Bytes, l is the number
of elements in the OTS signature. The index is 4 Bytes, and we consider the
encrypted position and the message hash randomizer, R each equal to the node
size in the scheme

Table 1: DGM and DGM+ keys and signature sizes (Byte) at 128, 192, and 256 bit
security and 264 signatures.

Algorithm bit security node size pk sk l signature size

DGM

128 22 44 44 47 1522

192 30 60 60 63 2554

256 38 76 76 79 3842

DGM+

128 16 32 16 35 916

192 24 48 24 51 1756

256 32 64 32 67 2852

7 Conclusion

In this paper we discussed the challenges of instantiating GM and DGM by
XMSS-T, and provided a tweak in the setup phases of both GM and DGM to
overcome the discussed challenges. Moreover, we analyzed the bit security of
DGM when instantiated with XMSS-T and showed that, because of the parallel
multiple XMSS-T instances construction, DGM is vulnerable to multi-target
attacks that may enable forgery with 44 bits effort less than that of XMSS-T
when the scheme is used to sign 264 messages. Finally, we proposed a solution
that mitigates the presented multi-target attacks and discussed a new message
hashing mechanism that reduces the associated signature and public key sizes.

References

[1] Alamélou, Q., Blazy, O., Cauchie, S., and Gaborit, P. A practical group
signature scheme based on rank metric. In International Workshop on the Arith-
metic of Finite Fields (2016), Springer, pp. 258–275.

[2] Alamélou, Q., Blazy, O., Cauchie, S., and Gaborit, P. A code-based group
signature scheme. Designs, Codes and Cryptography 82, 1-2 (2017), 469–493.

[3] AlTawy, R., and Gong, G. Mesh: A supply chain solution with locally private
blockchain transactions. Proceedings on Privacy Enhancing Technologies 2019, 3
(2019), 149–169.

17

[4] Ayebie, B. E., Assidi, H., and Souidi, E. M. A new dynamic code-based
group signature scheme. In International Conference on Codes, Cryptology, and
Information Security (2017), Springer, pp. 346–364.

[5] Bellare, M., Micciancio, D., and Warinschi, B. Foundations of group sig-
natures: Formal definitions, simplified requirements, and a construction based on
general assumptions. In International Conference on the Theory and Applications
of Cryptographic Techniques (2003), Springer, pp. 614–629.

[6] Boneh, D., Boyen, X., and Shacham, H. Short group signatures. In Interna-
tional Cryptology Conference (2004), Springer, pp. 41–55.

[7] Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., and
Zhandry, M. Random oracles in a quantum world. In International Conference
on the Theory and Application of Cryptology and Information Security (2011),
Springer, pp. 41–69.

[8] Boneh, D., and Shacham, H. Group signatures with verifier-local revocation. In
Proceedings of the ACM Conference on Computer and Communications Security
(2004), pp. 168–177.

[9] Bos, J. W., Hülsing, A., Renes, J., and van Vredendaal, C. Rapidly ver-
ifiable XMSS signatures. IACR Transactions on Cryptographic Hardware and
Embedded Systems (2021), 137–168.

[10] Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., and Rückert, M. On
the security of the Winternitz one-time signature scheme. In International Con-
ference on Cryptology in Africa (2011), Springer, pp. 363–378.

[11] Buchmann, J., Dahmen, E., and Hülsing, A. XMSS-a practical forward se-
cure signature scheme based on minimal security assumptions. In International
Workshop on Post-Quantum Cryptography (2011), Springer, pp. 117–129.

[12] Buser, M., Liu, J. K., Steinfeld, R., Sakzad, A., and Sun, S.-F. Dgm:
A dynamic and revocable group merkle signature. In European Symposium on
Research in Computer Security (2019), Springer, pp. 194–214.

[13] Camenisch, J., and Groth, J. Group signatures: Better efficiency and new
theoretical aspects. In International Conference on Security in Communication
Networks (2004), Springer, pp. 120–133.

[14] Camenisch, J., and Lysyanskaya, A. Dynamic accumulators and application
to efficient revocation of anonymous credentials. In International Cryptology Con-
ference (2002), Springer, pp. 61–76.

[15] Camenisch, J., and Lysyanskaya, A. Signature schemes and anonymous cre-
dentials from bilinear maps. In International Cryptology Conference (2004),
Springer, pp. 56–72.

[16] Chaum, D., and Van Heyst, E. Group signatures. In Workshop on the Theory
and Application of of Cryptographic Techniques (1991), Springer, pp. 257–265.

[17] Del Pino, R., Lyubashevsky, V., and Seiler, G. Lattice-based group signa-
tures and zero-knowledge proofs of automorphism stability. In Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security (2018),
pp. 574–591.

[18] El Bansarkhani, R., and Misoczki, R. G-merkle: A hash-based group signa-
ture scheme from standard assumptions. In International Conference on Post-
Quantum Cryptography (2018), Springer, pp. 441–463.

[19] Ezerman, M. F., Lee, H. T., Ling, S., Nguyen, K., and Wang, H. Provably
secure group signature schemes from code-based assumptions. IEEE Transactions
on Information Theory 66, 9 (2020), 5754–5773.

18

[20] Gordon, S. D., Katz, J., and Vaikuntanathan, V. A group signature scheme
from lattice assumptions. In International Conference on the Theory and Appli-
cation of Cryptology and Information Security (2010), Springer, pp. 395–412.

[21] Hülsing, A., Busold, C., and Buchmann, J. Forward secure signatures on
smart cards. In International Conference on Selected Areas in Cryptography
(2012), Springer, pp. 66–80.

[22] Hülsing, A., Butin, D., Gazdag, S.-L., Rijneveld, J., and Mohaisen, A.
Xmss: Extended Merkle signature scheme. In RFC 8391. IRTF, 2018.

[23] Hülsing, A., Rausch, L., and Buchmann, J. Optimal parameters for XMSS-
MT. In International Conference on Availability, Reliability, and Security (2013),
Springer, pp. 194–208.

[24] Hülsing, A., Rijneveld, J., and Song, F. Mitigating multi-target attacks in
hash-based signatures. In Public-Key Cryptography. Springer, 2016, pp. 387–416.

[25] Laguillaumie, F., Langlois, A., Libert, B., and Stehlé, D. Lattice-based
group signatures with logarithmic signature size. In International Conference
on the Theory and Application of Cryptology and Information Security (2013),
Springer, pp. 41–61.

[26] Langlois, A., Ling, S., Nguyen, K., and Wang, H. Lattice-based group
signature scheme with verifier-local revocation. In International Workshop on
Public Key Cryptography (2014), Springer, pp. 345–361.

[27] Libert, B., Ling, S., Mouhartem, F., Nguyen, K., and Wang, H. Signa-
ture schemes with efficient protocols and dynamic group signatures from lattice
assumptions. In International Conference on the Theory and Application of Cryp-
tology and Information Security (2016), Springer, pp. 373–403.

[28] Libert, B., Peters, T., and Yung, M. Group signatures with almost-for-free
revocation. In Cryptology Conference (2012), Springer, pp. 571–589.

[29] Libert, B., Peters, T., and Yung, M. Scalable group signatures with revoca-
tion. In International Conference on the Theory and Applications of Cryptographic
Techniques (2012), Springer, pp. 609–627.

[30] Ling, S., Nguyen, K., and Wang, H. Group signatures from lattices: Sim-
pler, tighter, shorter, ring-based. In IACR International Workshop on Public Key
Cryptography (2015), Springer, pp. 427–449.

[31] Merkle, R. C. A certified digital signature. In Conference on the Theory and
Application of Cryptology (1989), Springer, pp. 218–238.

[32] Nguyen, P. Q., Zhang, J., and Zhang, Z. Simpler efficient group signatures
from lattices. In IACR International Workshop on Public Key Cryptography
(2015), Springer, pp. 401–426.

[33] NIST. Post quantum crypto project. http://csrc.nist.gov/groups/ST/post-
quantum-crypto.

[34] NIST. Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process. https://csrc.nist.gov/Projects/post-
quantum-cryptography/post-quantum-cryptography-standardization/Call-for-
Proposals.

[35] Traoré, J. Group signatures and their relevance to privacy-protecting offline
electronic cash systems. In Australasian Conference on Information Security and
Privacy (1999), Springer, pp. 228–243.

[36] Yang, R., Au, M. H., Zhang, Z., Xu, Q., Yu, Z., and Whyte, W. Effi-
cient lattice-based zero-knowledge arguments with standard soundness: Construc-
tion and applications. In International Cryptology Conference (2019), Springer,
pp. 147–175.

19

A XMSS-T Addressing Scheme

XMSS-T utilizes a hash function addressing scheme that enumerates each hash
call in the scheme and outputs a distinct hash randomizer r and bit mask, q,
for each hash call to mitigate multi-target attacks [22]. XMSS-T has three main
substructures, WOTS-T, L-tree, and Merkle tree hash. The first substructure
requires for each hash call a hash randomizer and bit mask, each of n bits. The
others two substructures require a hash randomizer of n bits and 2n bits for the
bit mask. The hash function address consists of 256 bits. There are three address
types for the three substructure mentioned above which are described below.

1. WOTS-T hash address: The first field (32 bits) is the tree layer address
which indexes a given layer in which the WOTS-T exists (this value is set
to zero for DGM). The tree address (64 bits) indexes a tree within the layer
(this value is set to zero for DGM) and then the addressing type (32 bits)
which is equal to zero. The key pair address (32 bits) denotes the index of
the WOTS-T within the hash tree. The chain address (32 bits) denotes the
number of the WOTS-T secret key on which the chain is applied. The hash
address (32 bits) denotes the number of the hash function iterations within
a chain. The last field is the KeyAndMask (32 bits) that is used to generate
two different addresses for one hash function call (it is set to zero to get
the hash randomizer R and it is set to one to get the bit mask each of n bits).

2. L-tree hash address: The first field (32 bits) is the layer address which
indexes the layer in which the WOTS-T exists (this value is set to zero for
DGM). The tree address (64 bits) indexes a tree within the layer (this value
is set to zero for DGM) and then the addressing type (32 bits) which is
equal to one. The L-tree address (32 bits) denotes the leaf index that is used
to sign the message. The tree height (32 bits) encodes the node height in the
L-tree. The tree index (32 bits) refers to the node index within that height.
The last field is the KeyAndMask (32 bits) which in this substructure is
used to generate three different addresses for one hash function call (it is
set to zero to get the hash randomizer, R, it is set to one to get the first bit
mask and it is set to two to get the second bit mask each of n bits).

3. Merkle tree hash: The first field (32 bits) is the layer address which indexes
the layer in which the WOTS-T exists (this value is set to zero for DGM).
The tree address (64 bits) indexes a tree within the layer (this value is set
to zero for DGM) and then the addressing type (32 bits) which is equal to
two. Then a padding of zeros (32 bits). The tree height (32 bits) encodes the
node height in the main Merkle tree. Then the tree index (32 bits) refers to
the node index within that height. As the L-tree addressing, the last field is
the KeyAndMask (32 bits), it is used to generate three different addresses
for one hash function call (it is set to zero to get the hash randomizer, R, it
is set to one to get the first bit mask and it is set to two to get the second
bit mask).

20

