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From congruent number to elliptic curve

 Congruent number: We say a positive square-free integer n is congruent 
number, if there is a right triangle whose area is n. 

 n is congruent number ⟺ 𝐸𝑛: 𝑦
2 = 𝑥3 − 𝑛2𝑥 has non-torsion point.

 Proposition: 𝐸𝑛: 𝑦
2 = 𝑥3 − 𝑛2𝑥 has non-torsion point P = x, y , y ≠ 0 ⟺

∃r, s, ∆∈ ℕ, s. t. n∆2= (𝑟 + 𝑠)(𝑟 − 𝑠)𝑟𝑠. We can see that 𝑟 + 𝑠, 𝑟 − 𝑠, 𝑟, 𝑠
may include factors of n.

 Proof:𝑦2 = 𝑥3 − 𝑛2𝑥 ⇔ 𝑛𝑦2 = 𝑛𝑥 𝑥 − 𝑛 𝑥 + 𝑛 ⇔ 𝑛 𝑚2𝑦 2 =
𝑛𝑚 𝑚𝑥 𝑚𝑥 +𝑚𝑛 𝑚𝑥 −𝑚𝑛 . Then let r = mx, s = mn.



From congruent number to elliptic curve

 It is natural to related a subproblem of integer factoring to the problem of 
computing the Mordell-Weil group of elliptic curve 𝐸𝑛. But there are two 
problems remaining.

 1.If n is not a congruent number, how do we combine the Integer 
Factorization with the elliptic curve?

 2. Is there an efficient way to find the point?

 Solution1: Relate a greater family of elliptic curve.

 Solution2: The current approach is decent method and Heegner point method.



Previous works

 In 2003, Burhanuddin and Huang considered the family of elliptic curves 
𝐸𝐷: 𝑦

2 = 𝑥3 − 𝐷𝑥 where 𝐷 = 𝑝𝑞 with 𝑝 and 𝑞 distinct prime integers, 𝑝 ≡

𝑞 ≡ 3 𝑚𝑜𝑑 16, and 
𝑝

𝑞
= 1. Furthermore they speculated that the problem of 

integer factorization and the problem of computing the rational points of the 
elliptic curve can be polynomial-time equivalent.

 For the 2-Selmer group. They compute that 𝑆 𝜙 = {1, 𝑝𝑞}, 𝑆′ 𝜙 =
1, 𝑝, −𝑞,−𝑝𝑞 . At that time Ran𝑘 𝐸𝐷 = 1, and the non-torsion points on 𝐸𝐷

can factor D.



Previous works

 In 2014 Li and Zeng studied a family of elliptic curve 𝐸2𝐷𝑟: 𝑦
2 = 𝑥3 − 2𝐷𝑟𝑥

where 𝐷 = 𝑝𝑞 with 𝑝 and 𝑞 distinct prime integers, 2𝐷𝑟 is square-free. They 
proved that there are infinitely many 𝑟 > 1 such that 𝐸2𝐷𝑟 has conjectural 
rank one and 𝑣𝑝(𝑥(𝑘𝑃)) ≠ 𝑣𝑞(𝑥(𝑘𝑃)) for any odd integer 𝑘, where 𝑃 is the 

generator of 𝐸2𝐷𝑟 . Furthermore, assuming the Generalized Riemann 
hypothesis holds, the minimal value of 𝑟 is in𝑂(𝑙𝑜𝑔4(𝐷)).

 For the 2-Selmer group. They compute that 𝑆 𝜙 = {1,2𝐷𝑟}, 𝑆′ 𝜙 =
1, 𝐴,−2𝐷𝑟/𝐴,−2𝐷𝑟 , in which 𝐴 is divisible by only one of 𝑝 or 𝑞. At that 

time Ran𝑘 𝐸𝐷 = 1, and the non-torsion points on 𝐸𝐷 can factor 𝐷.



Our works

 Firstly, we focus on a larger family of elliptic curve 𝐸𝐷𝑟: 𝑦
2 = 𝑥3 − 𝐷𝑟𝑥 where 

𝐷 = 𝑝𝑞 is the integer we want to factor and 𝑟 is an arbitrary integer. 
Employing the method of two-descent, we reduce the problem of factoring 
integer to computing the Mordell-Weil group of 𝐸𝐷𝑟: 𝑦

2 = 𝑥3 − 𝐷𝑟𝑥 .

 The second work of this article is to improve their method of calculating 2-
Selmer group. We give a way to compute the 2-Selmer group of a family of 
elliptic curve 𝐸𝐷𝑟: 𝑦

2 = 𝑥3 − 𝐷𝑟𝑥, where 𝐷 = 𝑝𝑞 is a product of two distinct 
odd primes and r is an arbitrary integer.



Parity conjecture

 Corollary: Let elliptic curve 𝐸𝐷: 𝑦
2 = 𝑥3 − 𝐷𝑥, with 4 ∤ 𝐷, and 𝐷 quartic-free . 

We denote the rank of 𝐸𝐷 by 𝑟𝐸 , then

(−1)𝑟𝐸= 𝑤𝐸 = 𝑤∞ ∙ 𝑤2 ∙ ෑ

𝑝2∥𝐷

𝑤𝑝

In which

𝑤∞ = sgn(−𝐷)

𝑤2 = ቊ
−1 𝐷 ≡ 1,3,11,13 𝑚𝑜𝑑 16

1 otherwise

𝑤𝑝 =
−1

𝑝
= ቊ

−1 𝑝 ≡ 3 𝑚𝑜𝑑 4
1 𝑝 ≡ 1 𝑚𝑜𝑑 4



Two-descent method for 𝐸𝐷𝑟

 Considering the elliptic curve 𝐸𝐷𝑟: 𝑦
2 = 𝑥3 − 𝐷𝑟𝑥, denote it by 𝐸. And denote 

its dual curve 𝐸−4𝐷𝑟: 𝑦
2 = 𝑥3 + 4𝐷𝑟𝑥 by 𝐸.

 Define the two-descent map:

α: 𝐸(ℚ) → ൘
ℚ×

ℚ×2

𝑥, 𝑦 ⟼ ҧ𝑥
∞⟼ 1
𝑇 ⟼ −𝐷𝑟

ෝα: 𝐸(ℚ) → ൘
ℚ×

ℚ×2

ො𝑥, ො𝑦 ⟼ ҧො𝑥
ෝ∞⟼ 1
𝑇 ⟼ 𝐷𝑟



Theorem: we have the following properties:

 (1)α, ෝα are group homomorphisms

 (2)Imα ⊆< −1,2, 𝑏𝑖 >≜ S, 𝑏𝑖|𝐷𝑟,

Imෝα ⊆< −1,2, 𝑏𝑖 >≜ S, 𝑏𝑖|4𝐷𝑟.

 (3)If 𝑏 ∈ Imα, then 
−𝐷𝑟

𝑏
∈ Imα,

If𝑏 ∈ Imෝα, then 
𝐷𝑟

𝑏
∈ Imෝα.

 (4) 1,−𝐷𝑟 ⊆ Imα, 1, 𝐷𝑟 ⊆ Imෝα

 (5) Imα ∙ Imෝα = 2𝑟𝐸+2



 Theorem : For ∀𝑏 ∈ 𝑆, 𝑏 ∈ Imα ⟺ 𝐶𝑏
′ : 𝑤2 = 𝑏 −

2𝑟𝐷

𝑏
𝑧4 has solutions in ℚ.

For∀𝑏 ∈ መ𝑆, 𝑏 ∈ Imෝα ⟺ 𝐶𝑏: 𝑤
2 = 𝑏 +

8𝑟𝐷

𝑏
𝑧4 has solutions in ℚ.

 But deciding whether 𝐶𝑏
′ and 𝐶𝑏 have solutions in ℚ is a difficult problem, so 

instead we consider whether they have solutions on local ℚ𝑝 (𝑝|2𝐷𝑟∞).

 Definition: Define 𝑆′(𝜙) ≜ 𝑏 ∈ 𝑆|𝐶𝑏
′(ℚ𝑝) ≠ Φ, ∀𝑝|2𝐷𝑟∞ , called the 2-

Shafarevich group of 𝐸.

Define 𝑆(𝜙) ≜ 𝑏 ∈ መ𝑆|𝐶𝑏(ℚ𝑝) ≠ Φ, ∀𝑝|2𝐷𝑟∞ , called the 2-

Shafarevich group of 𝐸.



Theorem: Suppose 𝑟𝐸 ≥ 1, 𝑆′(𝜙) = 4, 𝑆(𝜙) = 2 or 𝑆(𝜙) = 4, 𝑆′(𝜙) = 2 ⟺
ш′ 𝜙 = ш 𝜙 = 1 and 𝑟𝐸 = 1.

Proposition: When 𝑆′ 𝜙 = 1,𝐴,
−2𝐷𝑟′

𝐴
, −2𝐷𝑟′ , 𝑆 𝜙 = 1,2𝐷𝑟′ ,𝑟𝐸 = 1. At that time, the 

map α, ෝα can be written as

α: 𝐸(ℚ) → ൘
ℚ×

ℚ×2

∞⟼ 1

𝑇 ⟼ −𝐷𝑟

2𝑘 + 1 𝑃 ⟼ 𝐴 𝑜𝑟
−𝐷𝑟

𝐴

2𝑘 + 1 𝑃 + 𝑇 ⟼
−𝐷𝑟

𝐴
𝑜𝑟 𝐴

2𝑘𝑃 ⟼ 1

2𝑘𝑃 + 𝑇 ⟼ −2𝐷𝑟

ෝα: 𝐸(ℚ) → ൘
ℚ×

ℚ×2

ෝ∞⟼ 1

𝑇 ⟼ 𝐷𝑟

𝑘 𝑃 ⟼ 1

𝑘 𝑃 + 𝑇 ⟼ 𝐷𝑟



Theorem 1: Assuming 𝐷 = 𝑝𝑞 is a product of two distinct odd primes, suppose 
the parity conjecture is true, then

 (1) There exists infinity many integer 𝑟, such that the rank of 𝐸𝐷𝑟 is greater or 
equal to one.

 (2) When the rank of 𝐸𝐷𝑟 is greater or equal to one, and 𝑆 𝜙 = {1, 𝐷𝑟}, 

𝑆′ 𝜙 = 1, 𝐴,−𝐷𝑟/𝐴,−𝐷𝑟 , where 𝐷𝑟 means 𝐷𝑟 with the square factors 
removed, 𝐴 is divisible by only one of 𝑝 or 𝑞, then 𝐸𝐷𝑟 has conjectural rank 
one. At that time, 𝑣𝑝(𝑥(𝑘𝑃)) ≠ 𝑣𝑞(𝑥(𝑘𝑃)) for any odd integer 𝑘, in which 𝑃 is 

the generator of 𝐸2𝐷𝑟 . Then we can factor 𝐷.



 Theorem 2: Let 𝐶𝑑: 𝑤
2 = 𝑑 +

𝐷

𝑑
𝑧4, 𝐷 = (−1)𝑚2𝑛ς𝑖=1

𝑛1 𝑝𝑖ς𝑗=1
𝑛2 𝑞𝑗

2ς𝑘=1
𝑛3 𝑟𝑘

3 ,

𝑑|𝐷 and d is square-free.  We have:



The proof of Burhanuddin and Huang



D r p,q,r

D ≡ 1mod 8

r ≡ 1 mod 8
p ≡ 5,7 mod 8 and

𝐷

𝑟
= −1

r ≡ 3 mod 8
p ≡ 3,7 mod 8 and

𝐷

𝑟
= −1

r ≡ 7 mod 8
p ≡ 3,5 mod 8 and

𝐷

𝑟
= −1

D ≡ 3mod 8

r ≡ 1 mod 8
p ≡ 5,7 mod 8 and

𝐷

𝑟
= −1

r ≡ 3 mod 8 p ≡ 5,7 mod 8

r ≡ 5 mod 8

p ≡ 1mod 8 and
𝑟

𝑝
= −1

p ≡ 3mod 8 and
𝑟

𝑞
= −1

p ≡ 5mod 8 and
𝑟

𝑞
= 1

p ≡ 7mod 8 and
𝑟

𝑝
= 1

r ≡ 7 mod 8 p ≡ 1,5 mod 8 and
𝑟

𝑝
= −1

p ≡ 3,7 mod 8 and
𝑟

𝑞
= −1

D ≡ 5mod 8

r ≡ 1 mod 8
p ≡ 3,7 mod 8 and

𝐷

𝑟
= −1

r ≡ 3 mod 8 p ≡ 1,7 mod 8 and
𝑟

𝑝
= −1

p ≡ 3,5 mod 8 and
𝑟

𝑞
= −1

r ≡ 5 mod 8 p ≡ 3,7 mod 8

r ≡ 7 mod 8

p ≡ 1mod 8 and
𝑟

𝑝
= −1

p ≡ 3mod 8 and
𝑟

𝑝
= 1

p ≡ 5mod 8 and
𝑟

𝑞
= −1

p ≡ 7mod 8 and
𝑟

𝑞
= 1

D ≡ 7mod 8

r ≡ 1 mod 8
p ≡ 3,5 mod 8 and

𝐷

𝑟
= −1

r ≡ 3 mod 8 p ≡ 1mod 8 and
𝑟

𝑝
= −1

p ≡ 3mod 8 and
𝑟

𝑞
= 1

p ≡ 5mod 8 and
𝑟

𝑝
= 1

p ≡ 7mod 8 and
𝑟

𝑞
= −1

r ≡ 5 mod 8

p ≡ 1mod 8 and
𝑟

𝑝
= −1

p ≡ 3mod 8 and
𝑟

𝑝
= 1

p ≡ 5mod 8 and
𝑟

𝑞
= 1

p ≡ 7mod 8 and
𝑟

𝑞
= −1



Remaining Problem

1. While D varies in ℤ, probability that the points on 
𝐸𝐷𝑟 can factor 𝐷.

2. More efficient way to find the point on 𝐸𝐷𝑟 .

3.There is a way to find point on surface 𝑦2 = 𝑥3 −
𝐷𝑟𝑧?



,

Thanks!


