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Abstract. Nonlinear feedback shift registers (NFSRs) have been used
in many recent stream ciphers. They are generally classified as Fibonacci
NFSRs and Galois NFSRs in terms of their implementation configura-
tions. Two NFSRs are said to be isomorphic if their state diagrams are
isomorphic, and two NFSRs are equivalent if their sets of output se-
quences are equal. Equivalent NFSRs must be isomorphic NFSRs, but
not the vice versa. Previous work has been done on the isomorphism and
equivalence of Fibonacci NFSRs. This paper continues this research for
Galois NFSRs. It first gives some characterizations for several kinds of
isomorphic Galois NFSRs, which improves and generalizes the previous
corresponding results for Fibonacci NFSRs. It then presents some char-
acterizations for two kinds of equivalent Galois NFSRs, helpful to the
design of NFSR-based stream ciphers.

Keywords: Nonlinear feedback shift register · Boolean function · Stream
cipher · Isomorphism · Equivalence.

1 Introduction

Nonlinear feedback shift registers (NFSRs) have been used as the main building
blocks in many stream ciphers, such as the finalists Grain [1] and Trivium [2] in
the eSTREAM project. An NFSR can be generally implemented in Fibonacci
or Galois configuration. In Fibonacci configuration, the feedback is only applied
to the last bit, while in the Galois configuration, the feedback can be applied to
every bit. NFSRs in Fibonacci configuration are called Fibonacci NFSRs, and
those in Galois configuration are called Galois NFSRs. Compared to Fibonacci
NFSRs, Galois NFSRs may shorten propagation time and improve throughput
[3]. Notably, the foregoing stream ciphers Grain and Trivium use the Galois
NFSRs. Precisely, both are Galois NFSRs with terminal bits, which have the
first several bits involved only shifts.

An NFSR has the same mathematical model as a Boolean network, which is
a finite automaton evolving through Boolean functions. Boolean networks have
been well developed in the community of systems and control [4] via a powerful
mathematical tool called semi-tensor product of matrices [5]. As mentioned in
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literature [6]-[10], NFSRs can be regarded as Boolean networks, and their cryp-
tographic properties can be facilitated to some extent to analyze by using the
semi-tensor product based Boolean network theory.

Two NFSRs are said to be isomorphic if their state diagrams are isomorphic,
and two NFSRs are said to be equivalent if their sets of output sequences are
equal. Equivalent NFSRs must be isomorphic, but not the vice versa. Some kinds
of isomorphic Fibonacci NFSRs were studied and the relation between their
feedback functions were revealed [9]. Some isomorphic Galois NFSRs equivalent
to Fibonacci ones were found [11].

Some work has been done on the equivalence of NFSRs. A Fibonacci NFSR
can be equivalent to “uniform” Galois NFSRs [3], and their initial states were
matched in [12]. “Lower triangular” Galois NFSRs [13] and cascade connections
of two Fibonacci NFSRs [14] were found equivalent to Fibonacci NFSRs. In
addition, some characterizations of the feedback of Galois NFSRs equivalent to
Fibonacci ones was revealed [15]. The Galois NFSRs with terminal bits that are
equivalent to Fibonacci ones were enumerated [16].

Contribution. This paper considers the isomorphism and equivalence of
Galois NFSRs. It first presents several kinds of isomorphic Galois NFSRs and
reveals the relation of their feedbacks, which improves and generalizes the cor-
responding results for Fibonacci NFSRs. It then gives some characterizations of
two kinds of Galois NFSRs equivalent to Fibonacci ones from the perspective of
feedbacks and numbers, benefiting the design of NFSR-based stream ciphers.

Organization. The paper is organized as follows. Section 2 gives some pre-
liminaries, including some basic concepts and related results on Boolean networks
and NFSRs. Our main results on isomorphism and equivalence of Galois NFSRs
are presented in Sections 3 and 4, respectively. The paper concludes in Section
5.

2 Preliminaries

In this section, we review some basic concepts and related results on the semi-
tensor product of matrices and NFSRs. Before that, we first introduce some
notations used throughout the paper.

Notations: F2 denotes the binary Galois field, and Fn2 is an n-dimensional
vector space over F2. N is the set of nonnegative integers. δin stands for the i-th
column of the n× n identity matrix In. The set of all columns of In is denoted
by ∆n. Let Ln×m be the set of all n × m matrices whose columns belong to
the set ∆n. For a matrix A = [δi1n δi2n · · · δimn ] ∈ Ln×m, we simply denote it as
A = δn[i1 i2 · · · im]. The operators +,− and ×, respectively, denote the ordinary
addition, subtraction and multiplication in the real field. The operations ⊕ and
�, respectively, represent the addition and multiplication over F2.
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2.1 Boolean network

Definition 1 ([17]). For an n × m matrix A = (aij) and a p × q matrix B,
their Kronecker product is defined as

A⊗B =


a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

...
an1B an2B · · · anmB

 .
Definition 2 ([5]). For an n ×m A and a p × q matrix B, let α be the least
common multiple of m and p. The semi-tensor product of A and B is defined as

AnB = (A⊗ I α
m

)(B ⊗ Iα
p

). (1)

We can easily observe that if m = p in Definition 2 , then the semi-tensor product
is degenerated into the conventional matrix product.

An n-variable Boolean function f is a function from Fn2 to F2. The decimal
number of a binary (i1, i2, . . . , in) is i = i12n−1 + i22n−2 + · · · + in. We simply
write f(i1, i2, . . . , in) as f(i). [f(2n − 1), f(2n − 2), · · · , f(0)] is called the truth
table of f , arranged in the reverse alphabet order. The matrix

F =

[
f(2n − 1) f(2n − 2) · · · f(0)

1− f(2n − 1) 1− f(2n − 2) · · · 1− f(0)

]
(2)

is named the structure matrix of f [18, 4]. The function f = [f1 f2 . . . fn]T is
called a vectorial function if all fis are Boolean functions.

The Hamming weight of a binary string α of finite length is the number
of ones in α, denoted by wt(α). The Hamming weight of a Boolean function
f , denoted by wt(f), is the Hamming weight of its truth table. The Hamming
weight is one of the most basic properties of a Boolean function, and is a cru-
cial criterion in cryptography [19]. If an n-variable Boolean function f satis-
fies wt(f) = 2n−1, then the Boolean function f is said to be balanced. An
n-variable Boolean function f is said to be linear with respect to the variable
Xi if f(X1, X2, · · · , Xn) = Xi ⊕ f̃(X1, X2, · · · , Xi−1, Xi+1, · · · , Xn) for some i
satisfying 1 ≤ i ≤ n. If a Boolean function f is linear with respect to some
variable, then it is balanced.

A Boolean network with n nodes and m outputs can be described in general
as the nonlinear system: {

X(t+ 1) = g(X(t)),

Y(t) = h(X(t)), t ∈ N,
(3)

where X = [X1 X2 . . . Xn]T ∈ Fn2 is the state, and the vectorial function
g = [g1 g2 · · · gn]T : Fn2 → Fn2 is the state transition function, and h =
[h1 h2 . . . hn]T : Fn2 → Fm2 is the output function.
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Lemma 1 ([4]). For any state X = [X1 X2 · · · Xn]T ∈ Fn2 , let x = [X1 X1⊕
1]T n [X2 X2 ⊕ 1]T n · · · n [Xn Xn ⊕ 1]T . Then x = δj2n ∈ ∆2n with j =
2n − (2n−1X1 + 2n−2X2 + · · ·+Xn).

From Lemma 1, we can easily see that the state X = [X1 X2 · · · Xn]T ∈ Fn2
and the state x = δj2n ∈ ∆2n with j = 2n − (2n−1X1 + 2n−2X2 + · · ·+Xn) are
one-to-one correspondent.

Boolean network (3) can be equivalently expressed as the linear system (6):{
x(t+ 1) = Lx(t),

y(t) = Hx(t), t ∈ N,
(4)

with the state x ∈ ∆2n , the output y ∈ ∆2m , the state transition matrix L ∈
L2n×2n , and the output matrix H ∈ L2m×2n . The j-th column of L satisfies

Colj(L) = Colj(G1)⊗ Colj(G2)⊗ · · · ⊗ Colj(Gn), j = 1, 2, . . . , 2n, (5)

with Gi being the the structure matrix of the i-th component gi of the vectorial
function g in (3) for any i ∈ {1, 2, . . . , n}. The j-th column of H can be computed
in a similar way.

2.2 Nonlinear feedback shift register

Fig.1 shows the diagram of an n-stage Galois NFSR, in which each small square
represents a binary storage device, also called bit. The content of bit i is labelled
as Xi. All Xis together form the Galois NFSR’s state [X1 X2 . . . Xn]T . Every
bit i has its own feedback function fi. They all form the Galois NFSR’s feedback
f = [f1 f2 . . . fn]T . At each periodic interval determined by a master clock,
the content Xi is updated by the value of fi taking at the previous contents of
all Xis. The n-stage Galois NFSR can be described by the nonlinear system:

X1(t+ 1) = f1(X1(t), X2(t), . . . , Xn(t)),

X2(t+ 1) = f2(X1(t), X2(t), . . . , Xn(t)),
...

Xn(t+ 1) = fn(X1(t), X2(t), . . . , Xn(t)),

(6)

where t ∈ N represents time instant.
If a Galois NFSR’s feedback f = [f1 f2 . . . fn]T satisfies fi(X1, X2, · · · , Xn) =

Xi+1 for all i = 1, 2, · · · , n − 1, then the n-stage Galois NFSR becomes an
n-stage Fibonacci NFSR. Fig. 2 describes an n-stage Fibonacci NFSR, which
is nonsingular if and only if its feedback function f is nonsingular, that is,
f = X1 ⊕ f̃(X2, X3, · · · , Xn) [20].

The state diagram of an n-stage NFSR is a directed graph consisting of 2n

vertices and 2n edges, in which each vertex represents a state of the NFSR, and
each edge represents a transition between two states. Precisely, if state X is
updated to state Y, then there is an edge from state X to state Y. In this case,
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Fig. 1. An n-stage Galois NFSR.
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Fig. 2. An n-stage Fibonacci NFSR.

X is a predecessor of Y, and Y is the successor of X. Consecutive distinct states
X1,X2, . . . ,Xp and their edges between them form a cycle of length p if X1 is
the successor of Xp.

For any X ∈ F2, denote X̄ = X ⊕ 1. Let Gi = (Vi, Ai) with i ∈ {1, 2},
be the state diagram of an n-stage NFSRi, where Vi is the set of states, while
Ai is the set of edges. G1 and G2 are said to be isomorphic if there exists a
bijective mapping ϕ : V1 → V2 such that for any edge E1 ∈ A1 from X to
state Y, there exists an edge E2 ∈ A2 from ϕ(X) to ϕ(Y). In this case, NFSR1
and NFSR2 are said to be isomorphic NFSRs. Furthermore, if the bijective
mapping ϕ satisfies ϕ = D : [X1 X2 . . . Xn]T 7→ [X̄1 X̄2 . . . X̄n]T , then G1

and G2 are said to be dual isomorphic, denoted by G2 = DG1; if ϕ satisfies
ϕ = R : [X1 X2 . . . Xn]T 7→ [Xn Xn−1 . . . X1]T , then G1 and G2 are
said to be anti-isomorphic, denoted by G2 = RG1; if ϕ satisfies ϕ = DR :
[X1 X2 . . . Xn]T 7→ [X̄n X̄n−1 . . . X̄1]T , then G1 and G2 are said to be dual
anti-isomorphic, denoted by G2 = DRG1.

Lemma 2 ([9]). For an n-stage Fibonacci NFSR1 with feedback function f ,

1. if the state diagram of an n-stage Fibonacci NFSR2 is dual isomorphic to
that of the Fibonacci NFSR1, then the feedback function of the Fibonacci

NFSR2 is Df satisfying Df (X1, X2, . . . , Xn) = f(X̄1, X̄2, . . . , X̄n);
2. if the state diagram of an n-stage Fibonacci NFSR2 is anti-isomorphic to

that of the Fibonacci NFSR1, then the feedback function of the Fibonacci
NFSR2 is Rf satisfying Rf (X1, X2, . . . , Xn) = f(Xn, Xn−1, . . . , X1);
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3. if the state diagram of an n-stage Fibonacci NFSR2 is dual anti-isomorphic
to that of the Fibonacci NFSR1, then the feedback function of the Fibonacci

NFSR2 is DRf satisfying DRf (X1, X2, . . . , Xn) = f(X̄n, X̄n−1, . . . , X̄1).

Lemma 3 ([21]). If an n-stage Fibonacci NFSR and an n-stage Galois NFSR
are equivalent, then their state diagrams are isomorphic.

Definition 3 ([16]). For a positive integer τ satisfying 1 ≤ τ ≤ n−1, an n-stage
Galois NFSR with feedback f = [f1 f2 . . . fn]T is said to have the terminal bit τ
if fi(X) = Xi+1 for all i = 1, 2, . . . , τ and for all X = [X1 X2 . . . Xn]T ∈ Fn2 .
Such an NFSR with terminal bit τ is called an n-stage τ -terminal-bit Galois
NFSR.

Lemma 4 ([16]). Suppose τ to be a positive integer satisfying 1 ≤ τ ≤ n − 1.
An n-stage τ -terminal-bit Galois NFSR represented by a nonlinear system X(t+
1) = f(X(t)) with state X ∈ Fn2 is equivalent to an n-stage Fibonacci NFSR
represented by a nonlinear system Y(t+ 1) = h(Y(t)) with state Y ∈ Fn2 , if and
only if there exists a bijective mapping ϕ : X 7→ Y such that ϕ(f(X)) = h(ϕ(X))
and

diag(1 1 · · · 1︸ ︷︷ ︸
τ+1

0 · · · 0)ϕ(X) = diag(1 1 · · · 1︸ ︷︷ ︸
τ+1

0 · · · 0)X (7)

for all X ∈ Fn2 , where diag(·) denotes a diagonal matrix with diagonal elements
of 1 and 0.

Lemma 5 ([15]). An n-stage Galois NFSR with feedback f = [f1 f2 · · · fn]T

can be equivalently expressed as a linear system:

x(t+ 1) = Lgx(t), t ∈ N,

where x ∈ ∆2n is the state, and Lg = δ2n [ξ1 ξ2 · · · ξ2n ] ∈ L2n×2n is the state
transition matrix, satisfying

ξi = 2n − 2n−1f1(2n − i)− 2n−2f2(2n − i)− · · · − 2fn−1(2n − i)− fn(2n − i),
j = 1, 2, · · · , 2n.

Lemma 6 ([10]). An n-stage Fibonacci NFSR with a feedback function f , can
be expressed as the following linear system:

x(t+ 1) = Lx(t), t ∈ N,

where x ∈ ∆2n is the state, L ∈ L2n×2n is the state transition matrix, satisfying

L = δ2n [η1 · · · η2n−1 η2n−1+1 · · · η2n ]

with {
ηi = 2i− si, i = 1, 2, · · · , 2n−1,

η2n−1+i = 2i− s2n−1+i,

and [s1, s2, · · · , s2n ] being the truth table of f , arranged in the reverse alphabet
order.
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3 Isomorphism of Galois NFSRs

In this section, we will reveal some characterizations of several kinds of isomor-
phic Galois NFSRs.

Theorem 1. For an n-stage Galois NFSR1 with feedback f = [f1 f2 . . . fn]T ,

1. the state diagram of an n-stage Galois NFSR2 is dual isomorphic to that of
Galois NFSR1, if and only if the feedback Df of the Galois NFSR2 satisfies

Df = [f1(X̄1, X̄2, · · · , X̄n) f2(X̄1, X̄2, · · · , X̄n) · · · fn(X̄1, X̄2, · · · , X̄n)]T ;
(8)

2. the state diagram of an n-stage Galois NFSR3 is anti-isomorphic to that of
Galois NFSR1, if and only if the feedback Rf of the Galois NFSR3 satisfies

Rf = [fn(Xn, Xn−1, . . . , X1) fn−1(Xn, Xn−1, . . . , X1)
. . . f1(Xn, Xn−1, . . . , X1)]T .

(9)

3. the state diagram of an n-stage Galois NFSR4 is dual anti-isomorphic to
that of Galois NFSR1, if and only if the feedback DRf of the Galois NFSR4
satisfies

DRf = [fn(X̄n, X̄n−1, . . . , X̄1) fn−1(X̄n, X̄n−1, . . . , X̄1)

. . . f1(X̄n, X̄n−1, . . . , X̄1)]T .
(10)

Proof. Let [a0 a1 . . . an]T be a vertex in the state diagram of Galois NFSR1.
Then, there is an edge from [a0 a1 . . . an]T to [f1(a1, a2, . . . , an) f2(a1, a2, . . . , an)
. . . fn(a1, a2, . . . , an)]T in the state diagram of Galois NFSR1.

Case 1: If the state diagram of the Galois NFSR2 is dual isomorphic to
that of the Galois NFSR1, then there is an edge from [ā1 ā2 . . . ān]T to
[f1(a1, a2, . . . , an) f2(a1, a2, . . . , an) . . . fn(a1, a2, . . . , an)]T in the state di-
agram of Galois NFSR2. Let bi = āi for all i = 1, 2, · · · , n. Then, there is an edge

from [b1 b2 . . . bn]T to [f1(b̄1, b̄2, · · · , b̄n) f2(b̄1, b̄2, · · · , b̄n) . . . fn(b̄1, b̄2, · · · , b̄n)]T

in the state diagram of Galois NFSR2. Thus, the feedback Df of Galois NFSR2
satisfies Equation (8).

Conversely, if the feedback Df of Galois NFSR2 satisfies Equation (8), then

there is an edge from [b1 b2 . . . bn]T to [f1(b̄1, b̄2, · · · , b̄n) f2(b̄1, b̄2, · · · , b̄n)

. . . fn(b̄1, b̄2, · · · , b̄n)]T in the state diagram of Galois NFSR2. Let ai = b̄i for all
i = 1, 2, · · · , n. Then there is an edge from [ā1 ā2 . . . ān]T to [f1(a1, a2, . . . , an)
f2(a1, a2, . . . , an) . . . fn(a1, a2, . . . , an)]T in the state diagram of Galois NFSR2.
Therefore, the state diagram of Galois NFSR2 is dual isomorphic to that of
Galois NFSR1.

Case 2: If the state diagram of Galois NFSR3 is anti-isomorphic to that of Ga-
lois NFSR1, then there is an edge from [an an−1 . . . a1]T to [fn(a1, a2, . . . , an)
fn−1(a1, a2, . . . , an) · · · f1(a1, a2, . . . , an)]T in the state diagram of the Ga-

lois NFSR3. Let bi = an−i+1 for all i = 1, 2, . . . , n. Then, there is an edge from
[b1 b2 . . . bn]T to [fn(bn, bn−1, . . . , b1) fn−1(bn, bn−1, . . . , b1) . . . f1(bn, bn−1, . . . ,
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b1)]T in the state diagram of the Galois NFSR3. Thereby, the feedback Rf of
Galois NFSR3 satisfies Equation (9).

Conversely, if the feedback Rf of Galois NFSR3 satisfies Equation (9), then
there is edge from [b1 b2 . . . bn]T to [fn(bn, bn−1, . . . , b1) fn−1(bn, bn−1, . . . , b1)
. . . f1(bn, bn−1, . . . , b1)]T in the state diagram of the Galois NFSR3. Let ai =
bn−i+1 for all i = 1, 2, . . . , n. Thus, there is an edge from [an an−1 . . . a1]T

to [fn(a1, a2, . . . , an) fn−1(a1, a2, . . . , an) · · · f1(a1, a2, . . . , an)]T in the state
diagram of Galois NFSR3. Therefore, the state diagram of Galois NFSR3 is
anti-isomorphic to that of Galois NFSR1.

Case 3: From Cases 1 and 2, we can easily follow Case 3. ut

Theorem 1 generalizes the results of Lemma 2 for Fibonacci NFSRs to Ga-
lois ones, and improves the necessary condition to the necessary and sufficient
condition, using the proof method similar to that in [9].

Theorem 2. For an n-stage nonsingular Galois NFSR1 with feedback f , the
state diagram of an n-stage nonsingular Galois NFSR2 has a direction opposite
to that of the Galois NFSR1, if and only if Galois NFSR2 has the feedback f−1.

Proof. Since the Galois NFSR1 is nonsingular, its feedback f is invertible, and
each state has unique predecessor and unique successor.

If the state diagram of an n-stage nonsingular Galois NFSR2 has a direction
opposite to that of NFSR1, then for any state X, its successor Y (i.e., Y = f(X))
in the state diagram of NFSR1 becomes its predecessor (i.e., X = f−1(Y)) in
the sate diagram of NFSR2. Due to the arbitrariness of state X, we can infer
that the Galois NFSR2 has the feedback f−1.

Conversely, if Galois NFSR2 has the feedback f−1, then the for any state Y,
its successor X (i.e., X = f−1(Y)) in the state diagram of NFSR2 becomes its
predecessor (i.e., Y = f(X))) in the sate diagram of NFSR1. Due the arbitrari-
ness of state Y, we can conclude that the state diagram of Galois NFSR2 has a
direction opposite to that of NFSR1. �

Corollary 1. For an n-stage nonsingular Fibonacci NFSR1 with feedback func-
tion f = X1+f̃(X2, X3, · · · , Xn), the state diagram of an n-stage Galois NFSR2
has a direction opposite to that of NFSR1 if and only if the Galois NFSR2 has
the feedback g = [g1 g2 . . . gn]T satisfying

g1 = Xn + f̃(X1, X2, · · · , Xn−1),

g2 = X1,

g3 = X2,
...

gn = Xn−1.

(11)

Proof. As a particular nonsingular Galois NFSR, the nonsingular Fibonacci N-
FSR1 with feedback function f = X1 + f̃(X2, X3, · · · , Xn) has the feedback
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f = [f1 f2 . . . fn]T satisfying

f1 = X2,

f2 = X3,
...

fn−1 = Xn,

fn = X1 ⊕ f(X2, X3, . . . , Xn).

By direct computation, we can deduce that f−1 = g satisfying Equation (11).
Then the result follows from Theorem 2. ut

Remark 1. The n-stage Galois NFSR2 with feedback g = [g1 g2 . . . gn]T

satisfying (11) is actually an n-stage Fibonacci NFSR with feedback function
Rf (X1, X2, . . . , Xn) = f(Xn, Xn−1, . . . , X1), where f is the feedback function of
the Fibonacci NFSR in Corollary 1. It implies that two n-stage anti-isomorphic
Fibonacci NFSRs, actually, have their state diagrams with directions opposite
to each other.

4 Equivalence of Galois NFSRs

In this section, we give some characterizations for two kinds of equivalent Galois
NFSRs.

Theorem 3. If an n-stage τ -terminal-bit Galois NFSR with feedback f = [f1 f2
. . . fn]T is equivalent to an n-stage Fibonacci NFSR, then its feedback function
fτ+1 satisfies

wt
(
[fτ+1(2n − 1), fτ+1(2n − 2), · · · , fτ+1(2n − 2n−τ−1)]

)
= wt

(
[fτ+1(2n − 2n−τ−1 − 1), fτ+1(2n − 2n−τ−1 − 2), · · · , fτ+1(2n − 2n−τ )]

)
= · · ·
= wt

(
[fτ+1(2n−τ−1 − 1), fτ+1(2n−τ−1 − 2), · · · , fi(0)]

)
= 2n−τ−2.

Proof. We use the semi-tensor product based Boolean network theory. Then, the
Galois NFSR represented by nonlinear system X(t+ 1) = f(X(t)) with X ∈ Fn2
has a linear system representation x(t + 1) = Lgx(t) with x ∈ ∆2n , and the
Fibonacci NFSR represented by nonlinear system Y(t+1) = h(Y(t)) with state
Y ∈ Fn2 has a linear system representation y(t+ 1) = Lfy(t) with y ∈ ∆2n .

If the n-stage τ -terminal-bit Galois NFSR is equivalent to an n-stage Fi-
bonacci NFSR, then according to Lemma 4, there exists a bijection ϕ : X 7→ Y
such that ϕ(f(X)) = h(ϕ(X)) and Equation (7) holds. It means there is a trans-
formation y = Px such that Lg = PTLfP , and P = δ2n [j1 j2 · · · j2n ] satisfies
1 ≤ ji ≤ 2n−τ−1, 1 + 2n−τ−1 ≤ j2n−τ−1+i ≤ 2n−τ , · · · , 1 + 2n − 2n−τ−1 ≤
j2n−2n−τ−1+i ≤ 2n for all i = 1, 2, · · · , 2n−τ−1.

Let Lf = δ[η1 η2 · · · η2n ] and Lg = δ2n [ξ1 ξ2 · · · ξ2n ]. Then,

Lg = PTLfP = PT δ2n [η1 η2 · · · η2n ]δ2n [j1 j2 · · · j2n ]

= (δ2n [j1 j2 · · · j2n ])
T
δ[ηj1 ηj2 · · · ηj2n ],
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which yields,

δξi2n = (δ[j1 j2 · · · j2n ])
T
δ
ηji
2n , i = 1, 2, · · · , 2n,

that is,

[0 · · · 0 1 0 · · · 0]T

ξi−th
= (δ2n [j1 j2 · · · j2n ])T [0 · · · 0 1 0 · · · 0]T

ηji−th
.

From the above equation, we can see that the column vector [0 · · · 0 1 0 · · · 0]T

ξi−th
is just a row permutation of [0 · · · 0 1 0 · · · 0]T

ηji−th
via the permutation (j1 j2 · · · j2n).

Clearly, if 1 ≤ ji ≤ 2n−τ−1, then 1 ≤ ηji ≤ 2n−τ−1 and thereby 1 ≤ ξi ≤
2n−τ−1. Similarly, if 1 + k2n−τ−1 ≤ ji ≤ (k + 1)2n−τ−1, then 1 + k2n−τ−1 ≤
ηji ≤ (k + 1)2n−τ−1 and thereby 1 + k2n−τ−1 ≤ ξi ≤ (k + 1)2n−τ−1 for all
k = 0, 1, 2, · · · , 2τ+1 − 1.

According to Lemma 6, we deduce that there are 2n−τ−2 ηis satisfying 1 ≤
ηi ≤ 2n−τ−1, and 2n−3 ηis satisfying 1 + 2n−τ−1 ≤ ηi ≤ 2n−τ with 1 ≤ i ≤
2n−τ−1. Similarly, there are 2n−τ−2 ηis satisfying 1 + k2n−τ−1 ≤ ηi ≤ (k +
1)2n−τ−1, 2n−τ−2 ηis satisfying 1 + (k + 1)2n−τ−1 ≤ ηi ≤ (k + 2)2n−τ−1 with
1 + k2n−τ−1 ≤ i ≤ (k + 1)2n−τ−1, k = 0, 1, 2, · · · , 2τ+1 − 1. Hence, there are
2n−τ−2 ξis satisfying 1 + k2n−τ−1 ≤ ξi ≤ (k + 1)2n−τ−1, 2n−τ−2 ξis satisfying
1 + (k+ 1)2n−τ−1 ≤ ξi ≤ (k+ 2)2n−τ−1, with 1 + k2n−τ−1 ≤ i ≤ (k+ 1)2n−τ−1,
k = 0, 1, 2, · · · , 2τ+1 − 1.

From Lemma 5, we know

ξi = 2n − 2n−1f1(2n − i)− 2n−2f2(2n − i)− · · · − 2fn−1(2n − i)− fn(2n − i)

for all j = 1, 2, · · · , 2n. Clearly, 1 ≤ ξi ≤ 2n−τ−1 yields

2n − 2n−τ−1 ≤ 2n−1f1(2n − i) + 2n−2f2(2n − i) + · · ·+ fn(2n − i) ≤ 2n − 1.

It means fτ+1(2n− i) = 1. Similarly, if 1 + 2n−τ−1 ≤ ξi ≤ 2n−τ , then fτ+1(2n−
i) = 0; and if 1+2n−τ ≤ ξi ≤ 3×2n−τ−1, then fτ+1(2n−i) = 1. Keeping the same
reasoning, we can infer that, if 1 + (2τ+1 − 2)2n−τ−1 ≤ ξi ≤ (2τ+1 − 1)2n−τ−1,
then fτ+1(2n − i) = 0, and if 1 + (2τ+1 − 1)2n−τ−1 ≤ ξi ≤ 2n, then fτ+1(2n −
i) = 1. Therefore, there are 2n−τ−2 ones in [fτ+1(2n−τ−1 − 1), fτ+1(2n−τ−1 −
2), · · · , fτ+1(0)], and in [fτ+1(2n−τ − 1), fτ+1(2n−τ − 2), · · · , fτ+1(2n−τ−1)], till
in [fτ+1(2n − 1), fτ+1(2n − 2), · · · , fτ+1(2n − 2n−τ−1)]. ut

Example 1. Consider a 4-stage 2-terminal-bit Galois NFSR with feedback f =
[f1 f2 f3 f4]T satisfying

f1 = X2,

f2 = X3,

f3 = X4 ⊕X1X2X3,

f4 = 1⊕X1 ⊕X2 ⊕X2X3 ⊕X2X4 ⊕X1X2X3.
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Table 1. the truth table of f3 tables.

X 1111 1110 1101 1100 1011 1010 1001 1000

f3(X) 0 1 1 0 1 0 1 0

X 0111 0110 0101 0100 0011 0010 0001 0000

f3(X) 1 0 1 0 1 0 1 0

This Galois NFSR is equivalent to a 4-stage Fibonacci NFSR with feed back
function f = 1 ⊕ X1 ⊕ X2 ⊕ X2X3 ⊕ X2X4 ⊕ X2X3X4. We can get the truth
table of f3, listed in Table 1.

It satisfies wt([f3(15), f3(14)]) = wt([f3(13), f3(12)]) = · · · = wt([f3(1), f3(0)]) =
1, consistent with the result in Theorem 3.

The following result gives some Boolean functions satisfying the necessary
condition of Theorem 3.

Proposition 1. The Boolean function

f(X1, X2, · · · , Xn) = Xi+1 ⊕ g(Xi+2, Xi+3, · · · , Xn) or

f(X1, X2, · · · , Xn) = Xi+1 ⊕ u(X1, X2, · · · , Xi, Xi+2, · · · , Xn)

satisfies

wt([f(2n − 1), · · · , f(2n − 2n−i)]) = · · · = wt([f(2n−i − 1), · · · , f(0)]) = 2n−i−1.

Proof. For the first case of f(X1, X2, · · · , Xn) = Xi+1⊕ g(Xi+2, Xi+3, · · · , Xn),
we note that f is actually not relative to X1, X2, . . . , Xi. For this case, we set
Yj = Xi+j for all j = 1, 2, · · · , n− i, and set h = f . Then, h(Y1, Y2, · · · , Yn−i) =
Y1 ⊕ g(Y2, Y3, · · · , Yn−i). The function h is, clearly, an (n− i)-variable function
and is linear with respect to the variable Y1. Hence, h is balanced, and thereby
wt(h) = 2n−i−1.

On the other hand, note that f(2n − 1), f(2n − 2), · · · , f(2n − 2n−i) are the
possible values of f(1, 1, · · · , 1, 1, Xi+1, · · · , Xn). Similarly, we can get f(2n −
2n−i − 1), f(2n − 2n−i − 2), · · · , f(2n − 2 × 2n−i) are the possible values of
f(1, 1, · · · , 1, 0, Xi+1, · · · , Xn). By the same reasoning, we have f(2n−2−1), f(2n−2

−2), · · · , f(0) are the possible values of f(0, 0, · · · , 0, 0, Xi+1, · · · , Xn). Togeth-
er considering f(1, 1, · · · , 1, 1, Xi+1, · · · , Xn) = f(1, 1, · · · , 1, 0, Xi+1, · · · , Xn) =
· · · = f(0, 0, · · · , 0, 0, Xi+1, · · · , Xn), we can infer that the result holds for the
first case.

For the second case of f(X1, X2, . . . , Xn) = Xi+1 ⊕ u(X1, X2, . . . , Xi, Xi+2,
. . . , Xn), any one of {u(1, 1, · · · , 1, 1, Xi+2, · · · , Xn), u(1, 1, · · · , 1, 0, Xi+2, · · · , Xn

), · · · , u(0, 0, · · · , 0, 0, Xi+2, · · · , Xn)} has a function g(Xi+2, Xi+3, · · · , Xn) e-
qual to it. Keeping the reasoning similar to the first case, we can prove the
result holds for the second case. ut

Let a sequence set S = {(si)i≥1|si ∈ F2}, and S̄ = {(s̄i)i≥1|(si)i≥1 ∈ S}. S̄
is called the complementary set of S.
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Proposition 2. The output sequence set S of an n-stage Fibonacci NFSR is
equal to its complementary set S, if and only if the feedback function f of the
Fibonacci NFSR satisfies f = Df .

Proof. Clearly, an output sequence (si)i≥1 ∈ S if and only if (s̄i)i≥1 ∈ S. In
an n-stage Fibonacci NFSR, Si = [si si+1 . . . si+n−1]T with i ≥ 1 is a s-
tate of the Fibonacci NFSR. Therefore, S = S̄ means that, there is a path
S1, S2, · · · , Sk(k ≤ 2n) in a Fibonacci state diagram if and only if there is also
a path S̄1, S̄2, · · · , S̄k. The mapping D : Sr 7→ S̄r with 1 ≤ r ≤ k is a dual
mapping. Therefore, we can get the Fibonacci NFSR’s state diagram G satisfies
G = DG, where DG is a dual graph of G. According to Theorem 1, the result
follows. ut

Remark 2. From the security perspective, those Fibonacci NFSR with output
sequence set equal to its complementary set should be avoided in the design of
NFSR-based stream ciphers, due to the “bad” randomness of output sequences.

Example 2. For a 3-bit Fibonacci NFSR with feedback function f(X1, X2, X3) =
X1X2 ⊕X2X3 ⊕X1X3, we get its state diagram as:

110→ 101→ 011→ 111 	;

001→ 010→ 100→ 000 	 .

Obviously, the feedback function f of the Fibonacci NFSR satisfies f = Df , and
its output sequence set is equal to its complementary set, consistent with the
result in Proposition 4.

Corollary 2. For two n-stage Fibonacci NFSRs with feedback functions f and
f
′

satisfying f
′

= f ⊕ 1. If one Fibonacci NFSR satisfies its output sequence set
equal to its complementary set, then the other also satisfies this property.

Proof. Without loss of generality, we assume the Fibonacci NFSR with feedback
function f satisfies its output sequence set equal to its complementary set. Then,
according to Proposition 2, we know Df = f . Together taking into consideration

f
′

= f ⊕ 1, we have

Df ′ (X1, X2, · · · , Xn) = f ′(X̄1, X̄2, · · · , X̄n) = f(X̄1, X̄2, · · · , X̄n)

= Df (X1, X2, · · · , Xn)⊕ 1 = f(X1, X2, · · · , Xn)⊕ 1 = f
′
(X1, X2, · · · , Xn).

According to Proposition 2 again, we know Corollary 2 holds. �

Proposition 3. Suppose an n-stage Fibonacci NFSR represented by a nonlinear
system Y(t+1) = h(Y(t)) with Y ∈ Fn2 satisfies its output sequences set equal to
its the complementary set. An n-stage Galois NFSR represented by a nonlinear
system X(t + 1) = f(X(t)) with Y ∈ Fn2 is equivalent to the n-stage Fibonacci
NFSR if and only if there exists a bijective mapping ϕ : X 7→ Y such that
ϕ(f(X)) = h(ϕ(X)) and [1 0 . . . 0]ϕ(X) = X or [1 0 . . . 0]ϕ(X) = X⊕ 1 for
all X ∈ Fn2 .



Isomorphism and Equivalence of Galois Nonlinear Feedback Shift Registers 13

Proof. Let S be the set of output sequences of the n-stage Fibonacci NFSR.
Then S = S̄ means for any sequence (si)i≥1 ∈ S, we have (si ⊕ 1)i≥1 ∈ S as
well, denoted by Property 1.

Necessity: Clearly, for each X ∈ Fn2 , there exists an edge from state X to state
F (X) in the state diagram of the Galois NFSR. Similarly, for each Y ∈ Fn2 , there
exists an edge from state Y to state H(Y) in the state diagram of the Fibonacci
NFSR. If a Galois NFSR is equivalent to a Fibonacci NFSR, then according to
Lemma 3, their state diagrams are isomorphic, which is equivalent to that there
exists a bijective mapping ϕ : X 7→ Y such that ϕ(f(X)) = h(Y) = h(ϕ(X))
for all X ∈ Fn2 . Note that an NFSR usually uses the content of the lowest bit as
its output. Together taking into consideration Property 1, we can infer that the
mapping ϕ must make the first component Y equal or complementary to the
first component of X, that is, [1 0 . . . 0]ϕ(X) = X or [1 0 . . . 0]ϕ(X) = X⊕ 1
for all X ∈ Fn2 .

Sufficiency: If there exists a bijective mapping ϕ : X 7→ Y such that ϕ(f(X))
= h(ϕ(X)), then according to the necessity proof, the state diagrams of the
Galois NFSR and the Fibonacci NFSR are isomorphic. Moreover, if the bijection
ϕ satisfies [1 0 . . . 0]ϕ(X) = X or [1 0 . . . 0]ϕ(X) = X ⊕ 1 for all X ∈ Fn2 ,
then their sets of output sequences are equal or complementary provided that
Property 1 holds. �

Theorem 4. If an n-stage Fibonacci NFSR satisfies its output sequences set
equal to its the complementary set, then there are 2 × (2n−1!)2 Galois NFSRs
are equivalent to the Fibonacci NFSR.

Proof. Different diagrams correspond to different Galois NFSRs. According to
Proposition 3, we can only count the number of bijective mappings ϕ. Suppose
the bijective mapping ϕ : X 7→ Y making the first component Y equal to the
first component of X. Thereby, if the first component of X is given, then the
first component of Y is given as well. Clearly, the first component of X has two
possible forms: 0 or 1, say, X = [0 X2 . . . Xn]T . Then Y = [0 Y2 . . . Yn]T . The
mapping ϕ : X = [0 X2 . . . Xn]T 7→ Y = [0 Y2 . . . Yn]T has (2n−1!) possible
forms. Thus, the bijective mapping ϕ : X 7→ Y making the first component Y
equal to the first component of X has (2n−1!)2 possible forms. Similarly, we can
easily observe that the bijective mapping ϕ : X 7→ Y making the first component
Y complementary to the first component of X has (2n−1!)2 possible forms as
well. Therefore, the result follows. �

5 Conclusion

This paper considered the isomorphism and equivalence of Galois NFSRs. It
characterized the feedback of several kinds of isomorphic Galois NFSRs. In ad-
dition, the characterizations of two kinds of equivalent Galois NFSRs were re-
vealed from the perspectives of their feedback functions and numbers. In the
future, it will be interesting to find more characterizations of isomorphic and/or
equivalent Galois NFSRs to benefit the design of NFSR-based stream ciphers.



14 Wenhui Kong, Jianghua Zhong, and Dongdai Lin

Acknowledgments. This work was supported by the National Natural Science
Foundation of China under Grant Nos. 61772029 and 61872359.

References

1. Hell M., Johansson T., Meier W.: The Grain Family of Stream ciphers. LNCS 4986,
179-190 (2008)
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