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Abstract. Elliptic Curve Cryptography (ECC) is considered a more ef-
fective public-key cryptographic algorithm in some scenarios, because it
uses shorter key sizes while providing a considerable level of security.
Modular multiplication constitutes the “arithmetic foundation” of mod-
ern public-key cryptography such as ECC. In this paper, we propose the
Cascade Operand Scanning for Specific Modulus (SMCOS) vectorization
method to speed up the prime field multiplication of ECC on Single In-
struction Multiple Data (SIMD) architecture. Two key features of our de-
sign sharply reduce the number of instructions. 1) SMCOS uses operands
based on non-redundant representation to perform a “trimmed” Cascade
Operand Scanning (COS) multiplication, which minimizes the cost of
multiplication and other instructions. 2) One round of fast vector re-
duction is designed to replace the conventional Montgomery reduction,
which consumes less instructions for reducing intermediate results of mul-
tiplication. Further more, we offer a general method for pipelining vector
instructions on ARM NEON platforms. By this means, the prime field
multiplication of ECC using the SMCOS method reaches an ever-fastest
execution speed on 32-bit ARM NEON platforms. Detailed benchmark
results show that the proposed SMCOS method performs modular multi-
plication of NIST P192, Secp256k1, and Numsp256d1 within only 205, 310
and 306 clock cycles respectively, which are roughly 32% faster than the
Multiplicand Reduction method, and about 47% faster than the Coarsely
Integrated Cascade Operand Scanning method.
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1 Introduction

Effective implementation of public-key cryptographic algorithms on general-
purpose computing devices facilitates the application of cryptography in com-
munication security. As a crucial component of modern public-key cryptography,
the Elliptic Curve Cryptography (ECC) based on the discrete logarithm problem
has been widely used, because of its shorter key sizes than other cryptographic
algorithms (e.g. DSA and RSA). Despite more than three decades of research
efforts, ECC defined over general fields of large prime characteristic is still consid-
ered computation-intensive due to underlying arithmetic operations performed
between large integers, especially when executed on embedded processors. Multi-
precision modular multiplication is a performance-critical building block in ECC,
which demands careful optimization to achieve acceptable performance [27].

In recent years, an increasing number of commodity processors were equipped
with co-processors that provide vector instruction set extensions to perform sin-
gle instruction multiple data (SIMD) operations. Advanced Vector Extension
(AVX), the vector instruction set provided by Intel, is mostly used for applica-
tion optimization on large server hosts and PCs. In terms of embedded platforms,
due to the limitation of their computing capability, more and more ARM em-
bedded processors (e.g. ARM Cortex-A, Cortex-R series) start to use NEON
vector instructions to execute a wide variety of compute-intensive applications.
For conventional cryptosystems, the parallel computing power provided by the
SIMD co-processor can readily be used to optimize the implementation of public-
key cryptographic algorithms such as RSA and ECC. In order to improve the
performance of cryptographic algorithms, the research community has studied
ways to reduce the latency of multi-precision modular multiplication through
SIMD vectorization.

In these designs, one of the most often vectorized modular reduction tech-
niques is the Montgomery algorithm [27, 3, 22, 26, 17, 31, 10, 25]. It was originally
proposed in 1985 [19] and has been widely deployed in real-world applications.
Montgomery modular multiplication, as a general modular multiplication de-
sign, has good execution efficiency and can be applied in multi-precision modular
multiplication of cryptographic algorithms such as RSA and ECC. However, the
Montgomery modular multiplication has the following two defects. One is that
the instructions used by Montgomery reduction are usually expensive, which are
roughly the same as the consumption of multiplication. On the other hand, a
conditional subtraction could occur at the end of Montgomery modular multipli-
cation in order to keep the result valid, which can be exploited in conventional
timing-based side-channel attacks [25, 15, 29].

Besides, since the redundant representation suggested in [14] can handle carry
propagation more easily, it is adopted by many vectorization solutions [2, 24, 5,
11, 10, 25, 16, 13]. The redundant representation allows several products of big
numbers to be summed up, without causing an overflow inside the “container”
(usually, a register) that holds the accumulation result. The cumbersome han-
dling of the carry propagation can therefore be avoided [10]. However, the re-
dundant representation introduces more multiplication instructions to compute
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more partial products than the non-redundant representation. Also, when it is
used for multiplicand or intermediate result reduction and carry propagation, the
inconsistency of the size in bits of partial operands divided by redundant repre-
sentation and the word size of the processors (32- or 64-bit) will cause additional
overhead of instructions (e.g. bic, shift instruction) for handling reduction and
carry.

In this paper, we propose an innovative design for ECC over the prime field
Fp, which uses non-redundant representation to implement a non-Montgomery
form of vectorized modular multiplication, called Cascade Operand Scanning for
Specific Modulus (SMCOS). Two key features of our design sharply reduce the
number of instructions and pipeline stalls. 1) In a non-redundant representation,
the multiplicands perform a “trimmed” Cascade Operand Scanning (COS) mul-
tiplication and obtain an intermediate result without carry propagation. COS
vector multiplication was introduced in [27], which greatly eliminates Read-
After-Write (RAW) dependencies in the instruction flow, and non-redundant
representation reduces the number of multiplication instructions. When applied
to SMCOS, the carry propagation at the end of COS is removed to avoid extra
pipeline stalls due to sequential scalar operations in vector registers. 2) For the
specific form of prime modulus in ECC, we introduce a fast vector reduction
method in SMCOS to reduce the intermediate results of multiplication, instead
of the general Montgomery reduction. The number of vector instructions con-
sumed by this reduction is only about 12% ∼ 23% of the Montgomery reduction
in [27] (see Sect. 4.2 for details). Furthermore, the SMCOS modular multiplica-
tion runs in constant time to resist certain types of side-channel attacks using
timing and branch prediction.

On the Cortex-A9 platform, the SMCOS and two other fast vector modular
multiplication methods for ARM NEON architecture, the Multiplicand Reduc-
tion (MR) [24] and the Coarsely Integrated Cascade Operand Scanning (CICOS)
[27], are respectively integrated into the cryptographic algorithm library OpenSSL
1.1.1k [21], libsecp256k1 [23] and MSR ECCLib 2.0 [18]. After that, we make
comprehensive comparisons of the execution time in terms of modular multipli-
cation, point addition, point doubling, Elliptical Curve Diffie-Hellman (ECDH)
for key exchange, Elliptic Curve Digital Signature Algorithm (ECDSA), etc.
The detailed benchmark results indicate that SMCOS brings larger performance
enhancements to all levels of ECC arithmetic. Taking ECDSA signature as an
example, the signature performance of NIST P192 curve based on SMCOS, is
about 17% faster than the MR method, 22% faster than the CICOS method, and
58% faster than the native OpenSSL signature. And for Secp256k1 curve, SM-
COS’s is roughly 10% faster than libsecp256k1 optimized by manual assembly
language before, and 26% faster than CICOS. Also for Numsp256d1 curve, the
signature performance using SMCOS is approximately 17% faster than CICOS
and 25% faster than MSR ECCLib (see Sect. 5 for details).

The main contributions of our work are as follows.

• Firstly, a vector modular multiplication design based on specific modulus
is proposed to fully exploit the computing power of SIMD co-processors for
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ECC. To the best of our knowledge, this is the first non-redundant represen-
tation and non-Montgomery form of vector modular multiplication design in
the prime field Fp.

• Secondly, due to the specific modulus of the prime field for ECC, we design
a single round of fast vector reduction method to reduce the intermediate
results of multiplication.

• Thirdly, we investigate the timing of ARM SIMD integer instructions and
provide a general method of pipelining on 32-bit ARM NEON platforms.

• Finally, thanks to highly optimized multiplication in Fp, the performance of
ECC protocols obtains great enhancements on 32-bit ARM processors with
NEON.

The rest of the paper is organized as follows. Section 2 surveys the related
work. The preliminaries about ARM NEON and the representation of prime
field elements are presented in Section 3. Sections 4 describes the design and im-
plementation of our SMCOS modular multiplication. In Section 5, performance
results of the SMCOS method and ECC implementations are given and com-
pared with other works and cryptographic algorithm libraries. We conclude in
Section 6.

2 Related Work

The first practice and evaluation of cryptographic algorithm on ARM NEON
architecture belonged to Bernstein and Schwabe in CHES’12 [2]. The authors
showed that NEON supports elliptic curve cryptography at surprised high speeds,
and summarized useful instructions for vectorization of cryptographic algorithms.
In 2013, Câmaraand et al. employed NEON’s VMULL.P8 instruction to describe a
novel vector implementation for 64-bit polynomial multiplication in ECC based
on the binary field F2m [4]. [1, 30, 28, 9, 20] proposed accelerated implementa-
tions of applying NEON instructions to other cryptographic algorithms (e.g.
AES, RSA, LWE, pairing-based and lattice-based cryptography, etc.). Despite
recent research progress, for cryptographic algorithms, in particular public-key
cryptography, the efficient implementation of multi-precision modular multipli-
cation on the SIMD architecture is still an interesting and challenging topic.

The authors of [25] and [10] used Intel SSE and AVX2 vector instructions to
implement Montgomery multiplication with redundant representation, and inte-
grated them into RSA modular exponentiation. In SAC 2013, Bos et al. intro-
duced a 2-way Montgomery modular multiplication, which uses non-redundant
representation and splits the Montgomery modular multiplication into two parts:
modular multiplication and reduction, being computed in parallel [3]. This is
the first Montgomery modular multiplication parallel design with non-redundant
representation, but its performance is compromised by the RAW dependencies in
the instruction flow. Based on the work of Bos, Seo et al. proposed the Coarsely
Integrated Cascade Operand Scanning (CICOS) method in ICISC 2014 [27]. This
method eliminates the RAW dependencies of the 2-way Montgomery modular
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multiplication in the carry propagation, thereby reducing the number of pipeline
stalls and reaching record execution time.

In [24], the Multiplicand Reduction (MR) modular multiplication was intro-
duced to implement NIST-recommended prime-field curves including P192 and
P224. The design adopts the redundant representation suggested in [14], and uses
a kind of fast reduction instead of the Montgomery reduction to reduce multipli-
cands in advance. It is significantly faster than some schoolbook multiplication
with intermediate reduction methods [21].

3 Preliminaries

3.1 ARM NEON architecture

The 32-bit RISC-based ARM architecture, which includes ARMv7, is the most
popular in embedded devices. It features 13 general-purpose 32-bit registers (R0-
R12), and additional three 32-bit registers which have special names and usage
models: R13 for stack pointer, R14 for link register, as well as R15 for program
counter. Its instruction sets support 32-bit operations or, in the case of Thumb
and Thumb2, a mix of 16- and 32-bit operations [1].

Many ARM cores include NEON, a powerful 128-bit SIMD engine that comes
with sixteen 128-bit registers (Q0-Q15) which can also be viewed as thirty-two
64-bit registers (D0-D31). The NEON instructions provide data processing and
load/store operations, and are integrated into the ARM and Thumb instruction
sets. NEON includes support for 128-, 16-, 8-, 4-, or 2-way SIMD operations
using vectors of 1-, 8-, 16-, 32- and 64-bit integer elements respectively. The
number of elements operated on is indicated by the specified register size. For
example, VADD.U8 Q0, Q1, Q2 indicates an addition operation on 8-bit integer
elements stored in 128-bit Q registers. This means that the addition operation is
on sixteen 8-bit lanes in parallel. Some instructions can have different size input
and output registers. For example, VMULL.U32 Q0, D2, D3 uses two pairs of 32-
bit integers stored in two 64-bit D registers as inputs to generate a pair of 64-bit
products and stores them in a 128-bit Q register. Similarly, there is a VMLAL.U32
instruction that executes a VMULL.U32 operation and adds the result to a 128-bit
Q register (treated as two 64-bit integers). For more detailed information, refer
to [12].

3.2 Representation of Prime Field Elements

The elements of Fp are usually represented by the integers in the range 0 to p−1
and the arithmetic operations remain as usual as in the integers except for the
computation of a reduction modulo p at the end of each operation, which has
the purpose of bringing the result within an original range. If p is a large integer
of several hundreds or even thousands of bits, in order to store an Fp element in
memory, an m-bit vector is needed, where m is the size of p in bits. However,
the word size of prevailing processors is either n = 32 or n = 64 bits, which
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in any case is shorter than the size of the large integer p. Therefore, multi-
precision arithmetic must be implemented to handle integers larger than the
word of processors [8]. At present, there are two popular designs for representing
elements in Fp, which are used in multi-precision arithmetic to divide an m-bit
large number.

The non-redundant (full-radix ) representation divides an Fp element into sev-
eral parts with the word size of processors. In this way, an element can be stored
by s words of n bits, i.e. s = ⌈m

n ⌉. The advantage of this representation is that
its storage is compact, which usually means that fewer iterations are required to
complete a multi-precision operation. However, one of the disadvantages of using
this representation on an n-bit architecture is that some arithmetic operations
impose a sequential evaluation of integer operations, for example, in the mod-
ular addition, the carry bits must be propagated from the least- to the most-
significant digits. If non-redundant representation, there will be no extra space
to store these carry bits, which limits the opportunities for calculating additions
in parallel [7].

The second representation, redundant (reduced-radix ) representation, divides
an Fp element into s′ shorter slices than the word size of processors, where
s′ = ⌈m

n′ ⌉, n′ ∈ R+ and n′ < n. Because it relies on the selection of a real
number n′ < n, each word will have enough bits to store the carry bits produced
by several modular additions. This feature can delay the carry propagation to the
end and facilitate the implementation of parallelization. However, as mentioned
above, compared to the non-redundant representation, it needs more iterations
(s′ ≥ s) for completing a multi-precision operation, so more instructions are
consumed.

4 Modular Multiplication for ECC Using SIMD
Extensions

In this section, we firstly describe the design of the Cascade Operand Scan-
ning for Specific Modulus (SMCOS) method for the prime field multiplication in
ECC and its implementation details on the ARM NEON architecture. Then, we
analyze the expected performance of our design, and compare it with the Mul-
tiplicand Reduction (MR) method in [24] and the Coarsely Integrated Cascade
Operand Scanning (CICOS) method in [27]. Finally, we offer a general method
of pipelining on 32-bit ARM NEON platforms.

4.1 Cascade Operand Scanning for Specific Modulus on SIMD

“Trimmed” COS. The COS Multiplication was first proposed in [27]. As a
multiplication using non-redundant representation, it eliminates RAW depen-
dencies in the instruction flow and has preferable efficiency. When it is used in
SMCOS, we remove the carry propagation at the end of multiplication, which
produces more pipeline stalls due to sequential scalar operations in vector reg-
isters.
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Fig. 1. Carry propagation in non-redundant representation. The lower bits are
added to higher bits of lower intermediate results. The additions with same serial
number are executed in parallel.

Taking the 32-bit word with 256-bit multiplication as an example, “trimmed”
COS method is described in Algorithm 1. In the beginning, the algorithm con-
ducts VTRN vector transpose instruction to re-organize and classify the operand B̄
as groups ((b7, b3), (b6, b2), (b5, b1), (b4, b0)) instead of the normal order ((b7, b6),
(b5, b4), (b3, b2), (b1, b0)). Next, in the first round, the products of (a0, a0) and
elements in ((b7, b3), (b6, b2), (b5, b1), (b4, b0)) are separately computed by VMLAL

vector multiplication instruction, which supports 2-way multiplication in paral-
lel. The partial product pairs are stored in ([L7, L3], [L6, L2], [L5, L1], [L4, L0]),
where each Li is a 64-bit D register. Following which, the VTRN instruction
is reused to separate the partial products into higher 32 bits (63 ∼ 32) and
lower 32 bits (31 ∼ 0), generating eight pairs of 32-bit data stored in 16 D
registers, L0 ∼ L7 and H0 ∼ H7. Finally, the lower bits are added to higher
bits of lower intermediate results. For example, the lower 32 bits stored in
([L7, L3], [L6, L2], [L5, L1], L4) are added to the corresponding higher 32 bits in
([H6, H2], [H5, H1], [H4, H0], H3). By referring to Figure 1, this operation uses 3
vector addition VADD and 1 ADD instruction. After addition, the least significant
word c0 (lowest 32 bits of B̄ × a0) is obtained, and other more significant words
are stored in H0 to H7.

In the next round, we need to perform B̄ × a1, because a1 is higher than
a0, the products of (a1, a1) and ((b7, b3), (b6, b2), (b5, b1), (b4, b0)) happen to be
accumulated to intermediate results in ([H7, H3], [H6, H2], [H5, H1], [H4, H0]) of
the first round, and we can perform a new round of operations in the same way.
This process is repeated with operands (a1 ∼ a7) by seven times more, we get
the intermediate result C̄ of B̄ × Ā. Its lower 256 bits are eight 32-bit values c0
to c7, which are the least significant words output at the end of each round. And
higher 256-bit intermediate results are in L0 to L7 after the last round, 64-bit C8

to C15. The higher 32 bits of them are carry bits to upper intermediate results.

After that, the original COS multiplication will carry out the final carry
propagation to align. Because it conducts sequential scalar operations directly
in vector registers, the RAW dependencies incur more pipeline stalls. But in
SMCOS, we keep the intermediate results of the multiplication to the next stage
and straightforwardly reduce the results without pipeline stalls.
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Algorithm 1 “Trimmed” COS. This arithmetic performs B̄ × Ā and obtains
the intermediate result C̄. Note that C̄ consists of two parts, ci with a range of
0 ∼ 232 − 1 and Ci with a range of 0 ∼ 2× (232 − 1).

Input: Two multiplicand Ā and B̄ such that Ā =
∑7

i=0 ai2
32i, B̄ =

∑7
i=0 bi2

32i, 0 ≤
ai, bi < 232.

Output: Multiplication intermediate result C̄ =
∑7

i=0 ci2
32i +

∑15
j=8 Cj2

32j .

1: B̄ ← VTRN(B̄)
2: Initialize Li ← 0 for all i ∈ {0, 1, ..., 7}
3: for i = 0 to 7 do
4: for j = 0 to 3 do
5: [Lj+4, Lj ]← VMLAL([Lj+4, Lj ], (ai, ai), (bj+4, bj))
6: end for
7: Initialize Hk ← 0 for all k ∈ {0, 1, ..., 7}
8: for j = 0 to 3 do
9: ([Lj+4, Lj ], [Hj+4, Hj ])← VTRN([Lj+4, Lj ], [Hj+4, Hj ])
10: end for
11: for j = 0 to 2 do
12: [Hj+4, Hj ]← VADD([Lj+5, Lj+1], [Hj+4, Hj ])
13: end for
14: H3 ← ADD(L4, H3)
15: ci ← (L0)0..31
16: Let Lj ← Hj for all j ∈ {0, 1, ..., 7}
17: end for
18: Let Ci+8 ← Li for all i ∈ {0, 1, ..., 7}
19: return C̄

Fast Reduction for Specific Modulus. Unlike most solutions [27, 3, 26, 17,
28] that use Montgomery reduction, we design a fast vector reduction method for
the characteristic that most prime fields for ECC have specific modulus, and gain
great performance advantages. We take NIST P192 and Secp256k1 as examples
to illustrate different use cases of fast vector reduction on different curves, and
offer our reduction method for modulo P = 2256–232–977 in Secp256k1, see
Algorithm 2.

In the reduction process, we will reduce the intermediate results of “trimmed”
COS multiplication. For NIST-standard prime-field curves, NIST primes are
special primes which are of the form 2m ± 2n − ... − 1. The smallest prime
among NIST primes is p192 = 2192–264–1, then any number larger than this
prime can be reduced by using the relation 2192 ≡ 264 + 1(modp192). So for
curves over NIST prime fields, we can use these relations to construct reduction
for intermediate results of multiplication larger than NIST primes. Take NIST

P192 as an example, as shown in Figure 2, the intermediate results of 192-bit
“trimmed” COS multiplication are separated into two groups. One group is the
32-bit c0 to c5 corresponding to 20, 232, ..., 2160 respectively, and they are less
than p192, so no reduction is required. We respectively store them in two 64-bit
D registers on a Q register in pairs ((c5, c4), (c3, c2), (c1, c0)). The second group
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Fig. 2. One round of fast vector reduction for NIST P192. 32-bit S registers
where “O” is located are cleared. The multiplication intermediate result to be
processed is on the left, and the processing flow is on the right.

is the 64-bit intermediate results C6 to C11 that are larger than p192. They are
items corresponding to 2192, 2224, ..., 2352. Using the above reduction relation,
C6 × 2192 ≡ C6 × 264 +C6(modp192). So, C6 is reduced from 2192 to 264 and 20,
which correspond to the positions of c2 and c0 respectively.

In the same way, after reduction, the positions and times of C7 to C11 can
also be calculated, as shown in Figure 2. We find that for the intermediate
results of the multiplication, the reduction can be further performed in an ad-
ditive and parallel manner. By referring to Algorithm 1, the value range of C6

to C11 is 0 ∼ 2 × (232 − 1). Accumulating them several times with c0 ∼ c5
will not result in an overflow of the 64-bit D register. We use the form of
([C11, C10], [C9, C8], [C7, C6]) in pairs (the locations marked in Figure 2) and
add them to the corresponding positions to complete all the reductions. Only 7
VADD vector additions are consumed, and we get six 64-bit reduction results, C0

to C5.

For the elliptic curves over non-NIST primes, take Secp256k1 as an exam-
ple. Although its modulo P = 2256–232–977 is more irregular than NIST primes,
the relation 2256 ≡ 232 + 977(modP ) still works. This relation results in some
reduction items that may carry a multiplication factor, 977. As shown in Figure
3, c0 to c7 are items less than modulo P , we store them in four Q registers in
pairs ((c7, c3), (c6, c2), (c5, c1), (c4, c0)). For C8 to C15, we can also execute the
reduction relation of modulo P to find out the positions of reduction items.
But unlike NIST primes, we must multiply some items with the constant 977 to
further transform their reduction to the method of NIST primes. Since 32-bit
ARM NEON platforms do not provide 64-bit multiplication and vector mul-
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Fig. 3. One round of fast vector reduction for Secp256k1. 32-bit S registers
where “O” is located are cleared. The multiplication intermediate result to be
processed is on the left, and the processing flow is on the right.

tiplication instructions, we skillfully adopt vector shift (e.g. VSHL, VSRA) and
vector subtraction VSUB to construct the multiplication, based on the relation
of 977 = (210 + 20)–(25 + 24). Fortunately, even if C8 to C15 are multiplied by
977, they are far from beyond the range of the D register. Finally, after the
multiplication with 977, we successfully conduct the reduction for modulo P in
the similar manner with NIST primes, using 7 vector addition VADD and 3 ADD

instructions.
For a more detailed description, see Algorithm 2, where VSHL is a vector shift

left instruction, and VSRA is a vector shift right and accumulate instruction. In
addition, for the third curve used in the experiment, Numsp256d1, the modulo
P is 2256–189. The reduction method in Secp256k1 can be reused with a little
transformation.

Final Alignment on Main Processor. SIMD co-processor is very effective in
performing vector operations (e.g. parallel multiplication), but performs poorly
for scalar operations like carry propagation and may pose more pipeline stalls
[24]. Therefore, different from the previous vector modular multiplication designs
[2, 27, 28], which deal directly with the final carry propagation and alignment
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Algorithm 2 One round of fast vector reduction for Secp256k1. This arithmetic
performs C̄ ′ ≡ C̄(mod(2256–232–977)).

Input: Multiplication intermediate result C̄ such that C̄ =
∑7

i=0 ci2
32i +∑15

j=8 Cj2
32j , 0 ≤ ci < 232, 0 ≤ Cj ≤ 2× (232 − 1).

Output: Reduction result C̄′ =
∑7

k=0 Ck2
32k.

1: Initialize Ci ← ci for all i ∈ {0, 1, ..., 7}
2: for i = 1 to 3 do
3: [Ci+4, Ci]← VADD([Ci+4, Ci], [Ci+11, Ci+7])
4: end for
5: C4 ← ADD(C4, C11)
6: C1 ← ADD(C1, C15)
7: for i = 0 to 3 do
8: [C′

i+12, C
′
i+8]← VSHL([Ci+12, Ci+8],#5)

9: [C′′
i+12, C

′′
i+8]← VSHL([Ci+12, Ci+8],#10)

10: [C′
i+12, C

′
i+8]← VSRA([C′

i+12, C
′
i+8],#1)

11: [C′′
i+12, C

′′
i+8]← VSRA([C′′

i+12, C
′′
i+8],#10)

12: [Ci+12, Ci+8]← VSUB([C′′
i+12, C

′′
i+8], [C

′
i+12, C

′
i+8])

13: [Ci+4, Ci]← VADD([Ci+4, Ci], [Ci+12, Ci+8])
14: end for
15: C0 ← ADD(C0, C15)
16: return C̄′

in vector registers, we design SMCOS as SIMD co-processor and ARM main
processor working together. Multiplication and reduction are implemented using
NEON vector instructions, but the final alignment is migrated to scalar registers.
This change effectively breaks RAW dependencies in the instruction flow and
reduces pipeline stalls. When carry bits are propagated to the most significant
coefficient, no matter whether the digit (higher 32 bits of C7 in Figure 3) larger
than modulo P is 0, we will use reduction relations to perform a simple reduction
and the second round of alignment, ensuring that SMCOS runs in constant time
for resisting timing-based side-channel attacks.

4.2 Performance Analysis

In this section, we analyze the performance of our Cascade Operand Scanning
for Specific Modulus (SMCOS) method, and compare it with the Multiplicand
Reduction (MR) method in [24] and the Coarsely Integrated Cascade Operand
Scanning (CICOS) method in [27].

For the clock cycle of instructions on the ARM NEON architecture, we de-
note 2-cycle instructions (e.g. VMULL, VMLAL, etc.) as X, and 1-cycle instructions
(e.g. VADD, ADD, VTRN, etc.) as Y . For the modular multiplication in NIST P192,
in the process of multiplication, the SMCOS and CICOS methods using non-
redundant representation need to be executed 6 rounds. In each round they
mainly conduct 3 VMLAL (VMULL), 3 VTRN, 2 VADD, and 1 ADD instructions, the
instructions consumed in each round are equal to 3X + 6Y . Therefore, for the
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Table 1. Comparison of instructions for modular multiplication. X represents
a 2-cycle instruction and Y represents a 1-cycle instruction.

Elliptic Curve Stage MR[24]* CICOS[27] Our SMCOS

NIST P192

Multiplication 32X 18X + 36Y 18X + 36Y
Reduction 35Y 18X + 36Y 7Y

Final Alignment 48Y 12Y 12Y
Total 32X + 83Y 36X + 84Y 18X + 55Y

Secp256k1

Multiplication - 32X + 64Y 32X + 64Y
Reduction - 32X + 64Y 30Y

Final Alignment - 16Y 16Y
Total - 64X + 144Y 32X + 110Y

Numsp256d1

Multiplication - 32X + 64Y 32X + 64Y
Reduction - 32X + 64Y 24Y

Final Alignment - 16Y 16Y
Total - 64X + 144Y 32X + 104Y

*The MR method is not applicable to Secp256k1 and Numsp256d1.

SMCOS and CICOS methods, their total instructions in the multiplication pro-
cess are approximately 18X +36Y . The MR with redundant representation is 8
rounds in total, and each round only conducts VMULL (VMLAL) four times, which
is equal to 4X, and its total execution instructions are about 32X.

In the reduction stage, the SMCOS method only requires one round, seven
VADD instructions, so the total number of instructions used is 7Y . Each round
of MR mainly requires 2 VEXT, 1 BIC, and 2 ADD instructions, 7 rounds in total,
and the instructions can be represented as 35Y . As for CICOS, its reduction
and multiplication are all completed by a COS multiplication, so the instruc-
tions used for reduction are also about 18X + 36Y . In the final alignment, the
instructions consumed by the SMCOS and CICOS methods with non-redundant
representation are mainly additions, and each alignment needs carry only six
times, and the total instructions are about 12Y . Compared with them, the MR
using redundant representation also requires a shift and a bic instruction to
complete carry, and each alignment executes 8 times, so the total instructions
are roughly 48Y .

Based on the same standard, we count the instructions of the SMCOS and CI-
COS methods at each stage, when they are applied to Secp256k1 and Numsp256d1.
As shown in Table 1, both 2-cycle instruction (X) and 1-cycle instruction (Y )
used by SMCOS are significantly reduced compared to MR and CICOS methods.
According to Table 1, it can be further estimated that clock cycles of the instruc-
tions conducted by the SMCOS method are reduced by about 38% compared
with MR, and about 36% ∼ 42% compared with CICOS. In particular, for the
vector modular multiplication designs implemented by NEON, the main 2-cycle
instructions used are VMULL and VMLAL vector multiplication instructions. For
the two instructions with larger execution cycles, the SMCOS method greatly
reduces the frequency of their use, which is mainly reflected in the following two
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aspects. 1) In the multiplication stage, we use a non-redundant representation,
which reduces the number of partial products compared to the MR method with
redundant representation. Taking NIST P192 as an example, MR uses a radix-
224 representation (i.e. 24 bits per word) for 192-bit operands, the total number
of partial products is 8×8 = 64, which requires 32 vector multiplication instruc-
tions. On the other hand, SMCOS uses non-redundant representation based on
a radix of 232, and reduces the number of partial products to 6×6 = 36, only 18
vector multiplication instructions. Besides, there are also fewer other instructions
for reduction and carry propagation, because the size in bits of operands sepa-
rated in a non-redundant way is the same as the word size of ARM processors. 2)
In the reduction stage, our choice is not the Montgomery reduction adopted by
CICOS, because it consumes the same instructions as the multiplication stage. A
fast vector reduction design is used by SMCOS, so that SMCOS does not need to
use any multiplication and only requires some instructions (e.g. addition, shift,
and subtraction) with smaller clock cycles to complete the reduction.

4.3 Making SMCOS Fully Pipelined

Data dependencies in the instruction flow may cause pipeline stalls during the
execution of vector instructions. If an instruction about to be executed has to
wait for the operands written by the previous instruction for several cycles,
in the meantime no other instructions enter the pipeline, the cycles of SIMD
co-processors will be wasted and the performance will be compromised [31].
This kind of data dependencies between instructions are called Read-After-Write
(RAW) dependencies, and the purpose of pipelining is to reduce or avoid RAW
dependencies. Due to a large number of pipeline stalls, the 2-way Montgomery
modular multiplication in [3] even obtains lower performance than scalar meth-
ods, when they are all implemented on ARM. Therefore, in order to maximize
the performance of SMCOS, we need to perform sophisticated pipelining. And
we investigate the clock cycles and delay of the instructions used by SMCOS.
The advanced SIMD integer instruction timing on ARM Cortex-A9 platforms is
provided in [6], as shown in Table 2.

We conduct sophisticated pipelining in each stage of the SMCOS implemen-
tation. During the execution of SMCOS, every vector instruction will be per-
formed in terms of the sequence in the assembly code, so we manually adjust
the instruction sequence to avoid pipeline stalls. Take the construction of vector
multiplication with 977 in Algorithm 2 as an example, the original assembly
code is ASM Code 1 in Figure 4. According to the timing of vector instructions
in Table 2, the manually adjusted assembly code is ASM Code 2 in Figure 4.

As described in Algorithm 2, ASM Code 1 uses 2 VSHL, 2 VSRA, and 1 VSUB

instructions to construct a vector multiplication with constant 977 on four pairs
of 64-bit data stored in Q8 to Q11. The processing code of Q8 is in lines 1 to 5
of ASM Code 1, and the codes of Q9 to Q11 can be deduced by analogy. There
are a lot of RAW dependencies in the original assembly code. Even though the
execution cycle of the 20 instructions in ASM Code 1 is only 20 clock cycles
in total, in fact, according to Table 2, due to pipeline stalls caused by the
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Table 2. Advanced SIMD integer instruction timing on ARM Cortex-A9[6]

Instruction Description Issue Cycles* Available Result**

VADD Vector Addition 1 3
VDUP Vector Duplication 1 2
VMOV Vector Move 1 3
VSWP Vector Swap 1 2
VSUB Vector Subtraction 1 3
VEXT Vector Extraction and Concatenate 1 2
VTRN Vector Traspose 1 2
VSHL Vector Shift Left 1 3
VSRA Vector Shift Right with Addition 1 4
VMULL Vector Multiplication 2 7
VMLAL Vector Multiplication with Addition 2 7

*This is the number of issue cycles the particular instruction consumes.
**The Result field indicates the execution cycle when the result is ready.

instruction dependencies, it takes 50 cycles to complete execution and get all
the results. This is absurd but true. In order to reduce pipeline stalls, we insert
several independent instructions into any two data-dependent instructions to
break these dependencies, so that the pipeline can be filled with new instructions
again and fully utilized while an instruction is waiting for the result of the
previous instruction. By referring to Table 2, we perform pipelining to ASM
Code 1, the adjusted ASM Code 2 only takes 22 clock cycles to get all results,
which is 44% of ASM Code 1.

5 Results

In this section, we conduct the experiments to evaluate our SMCOS method and
ECC implementations on the 32-bit ARM Cortex-A9 processor and compare
our results with related work and several ECC algorithm libraries, in terms of
modular multiplication, point addition, point doubling, ECDH, and ECDSA.

5.1 Target Platforms

The ARM Cortex-A series are full implementations of the ARMv7, v8 architec-
ture including NEON engine. The Cortex-A processors provide a series of appli-
cation scenarios for devices using operating systems such as Linux or Android.
These devices are used in various applications, from low-cost handheld devices
to smartphones, tablets, set-top boxes, and corporate network devices. Among
the Cortex-A series processors, we choose the Cortex-A9 on 32-bit ARMv7 ar-
chitecture as the experimental platform, which is consistent with the previous
implementations [27, 28, 3, 17, 16, 1]. The Cortex-A9 processor is widely used in
several devices including iPad 2, iPhone4S, Galaxy S2, Galaxy S3, Galaxy Note
2, Kindle Fire, and NVIDIA Tegra T30. At the same time, the NEON instruc-
tions on its ARMv7 architecture are compatible with ARMv8.
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1 vshl.u64 q12 , q8, #5

2 vsra.u64 q12 , q12 , #1

3 vshl.u64 q8, q8, #10

4 vsra.u64 q8, q8, #10

5 vsub.u64 q8, q8, q12

6 vshl.u64 q13 , q9, #5

7 vsra.u64 q13 , q13 , #1

8 vshl.u64 q9, q9, #10

9 vsra.u64 q9, q9, #10

10 vsub.u64 q9, q9, q13

11 vshl.u64 q14 , q10 , #5

12 vsra.u64 q14 , q14 , #1

13 vshl.u64 q10 , q10 , #10

14 vsra.u64 q10 , q10 , #10

15 vsub.u64 q10 , q10 , q14

16 vshl.u64 q15 , q11 , #5

17 vsra.u64 q15 , q15 , #1

18 vshl.u64 q11 , q11 , #10

19 vsra.u64 q11 , q11 , #10

20 vsub.u64 q11 , q11 , q15

(a) ASM Code 1 (Original)

1 vshl.u64 q12 , q8, #5

2 vshl.u64 q8, q8, #10

3 vshl.u64 q13 , q9, #5

4 vshl.u64 q9, q9, #10

5 vshl.u64 q14 , q10 , #5

6 vshl.u64 q10 , q10 , #10

7 vshl.u64 q15 , q11 , #5

8 vshl.u64 q11 , q11 , #10

9 vsra.u64 q12 , q12 , #1

10 vsra.u64 q8, q8, #10

11 vsra.u64 q13 , q13 , #1

12 vsra.u64 q9, q9, #10

13 vsra.u64 q14 , q14 , #1

14 vsra.u64 q10 , q10 , #10

15 vsra.u64 q15 , q15 , #1

16 vsra.u64 q11 , q11 , #10

17 vsub.u64 q8, q8, q12

18 vsub.u64 q9, q9, q13

19 vsub.u64 q10 , q10 , q14

20 vsub.u64 q11 , q11 , q15

(b) ASM Code 2 (Adjusted)

Fig. 4. Two pieces of code for constructing vector multiplication with 977.

5.2 Performance Comparison of Prime Field Multiplication

We perform the experiments on the Exynos 4412 development board equipped
with the Cortex-A9 processor (1.4GHz), and clock cycles are measured by read-
ing counter registers from Performance Monitoring Unit (PMU) inside CP15
co-processor of ARM. We select three elliptic curves over prime fields with dif-
ferent categories and security levels, NIST P192, Secp256k1, and Numsp256d1,
to deploy the experiments. We implement the SMCOS, MR [24] and CICOS
[27] vector modular multiplication methods in ARM assembly language, and
integrate them into several ECC algorithm libraries for comparison. In order
to control the variables, specifically, for NIST P192 curve, we choose OpenSSL

1.1.1k [21] to perform the replacements and evaluations of the above three vec-
tor methods on corresponding prime field. For Secp256k1 curve, libsecp256k1
[23], the fastest official algorithm library used for Bitcoin protocol implementa-
tions, is selected for method replacements. It is worth mentioning that its mod-
ular multiplication implementation is optimized by manual assembly before. As
for Numsp256d1 curve, we choose the ECC algorithm library MSR ECCLib 2.0

[18] provided by Microsoft Research.
For our SMCOS method, MR method, CICOS method, and several ECC

libraries, Table 3 summarizes the number of clock cycles required to perform one
modular multiplication operation on the three curves. This result impressively
demonstrates the efficiency of SMCOS for modular multiplication in ECC, and
indirectly supports the performance analysis of Section 4.2, that is, SMCOS
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Table 3. Comparison of clock cycles for modular multiplication*

Elliptic Curve Field Implementation Mod-Mul

NIST P192 F2192−264−1

Our SMCOS 205
MR[24] 301

CICOS[27] 387
OpenSSL[21] 1,079

Secp256k1 F2256−232−977

Our SMCOS 310
CICOS[27] 574

libsecp256k1[23] 434
OpenSSL[21] 2,051

Numsp256d1 F2256−189

Our SMCOS 306
CICOS[27] 574

MSR ECClib[18] 1,050

*Entries are clock cycles measured on a ARM Cortex-A9 processor.

uses fewer instructions in the multiplication and reduction stages, and has higher
performance.

The detailed results are as follows. For NIST P192 curve, our SMCOS method
only needs 205 clock cycles to complete a modular multiplication operation,
which is about 32% faster than MR, about 47% faster than CICOS, and more
than five times as fast as the special NIST modular multiplication in OpenSSL.
For Secp256k1 curve, the clock cycles of SMCOS is only 310, which is almost
equal to the time to conduct a 256-bit multiplication in [27]. This result is
roughly 46% faster than CICOS, 29% faster than the hand-optimized modular
multiplication of libsecp256k1, and 85% faster than the Montgomery method
used by OpenSSL. For Numsp256d1 curve, SMCOS also has an overwhelming ad-
vantage, about 47% faster than CICOS and about 71% faster than MSR ECClib.
Moreover, for these ECC algorithm libraries, except for the modular multiplica-
tion of libsecp256k1, other libraries are implemented in C language on ARM
platforms. This is why the performance of these libraries is much lower than that
of several vector methods such as SMCOS.

5.3 Performance Comparison of Elliptic Curve Arithmetic

Point addition and point doubling based on underlying prime field arithmetic
are the core operations of various ECC protocols. Table 4 shows the clock cy-
cles of point addition and point doubling for each implementation. Profit from
the better optimization of the prime field multiplication, the point addition and
point doubling using the SMCOS method also gain better experimental results
than other methods. In OpenSSL’s NIST P192, our SMCOS method requires 6340
and 5755 clock cycles to perform point addition and point doubling, which are
roughly 18% and 23% faster than MR, roughly 27% and 32% faster than CI-
COS. As for Secp256k1, SMCOS makes point addition and point doubling reach
record-setting execution times on Cortex-A9 processors, they only consume 5853
and 2736 clock cycles, which are about 18% and 11% faster than libsecp256k1,
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also about 35% and 40% faster than CICOS. For Numsp256d1 curve, the point
addition and point doubling on SMCOS require 7657 and 3297 clock cycles,
which are about 36% faster than CICOS, and about three times as fast as MSR
ECClib.

By referring to Table 4, compared to libsecp256k1 and MSR ECClib for
256-bit ECC, the performance of 192-bit NIST P192 in native OpenSSL is lower.
So even if we use several vector methods to replace its prime field multiplication,
point addition and point doubling do not gain good benchmark results. This is
also the reason why we choose efficient dedicated libraries for Secp256k1 and
Numsp256d1 curves. But even so, deploying our SMCOS method to OpenSSL still
has a greater performance enhancement than other designs.

Table 4. Comparison of clock cycles for point addition and point doubling*

Elliptic Curve Implementation Point Addition Point Doubling

NIST P192

Our SMCOS 6,340 5,755
MR[24] 7,692 7,409

CICOS[27] 8,727 8,419
OpenSSL[21] 17,003 14,860

Secp256k1

Our SMCOS 5,853 2,736
CICOS[27] 9,017 4,563

libsecp256k1[23] 7,132 3,064
OpenSSL[21] 25,840 24,751

Numsp256d1
Our SMCOS 7,657 3,297
CICOS[27] 11,893 5,164

MSR ECClib[18] 19,424 9,220

*Entries are clock cycles measured on a ARM Cortex-A9 processor.

5.4 Performance Results of ECDH and ECDSA

The ultimate goal of our SMCOS method is to reduce the computational com-
plexity of ECC protocols such as ECDSA and ECDH, and improve their perfor-
mance, so that they can be used more extensively on general-purpose computing
devices, especially on embedded devices. As far as the performance of ECDSA
and ECDH, to evaluate the impact of our implementation techniques, we com-
pare SMCOS with two fast vector modular multiplication methods, MR and
CICOS, and several ECC libraries.

Table 5 shows the benchmark results of ECDH key exchange and ECDSA
signature based on several implementations. For ECDH key exchange, the SM-
COS method is roughly 27% ∼ 34% faster than CICOS (all 3 curves), 20% faster
than MR (NIST P192), 63% faster than OpenSSL (NIST P192), 14% faster than
libsecp256k1 (Secp256k1), and 63% faster than MSR ECClib (Numsp256d1).
Moreover, ECDSA signature using SMCOS is about 17% ∼ 26% faster than CI-
COS, 17% faster than MR, 58% faster than OpenSSL, 10% faster than libsecp256k1,
and 25% faster than MSR ECClib. In summary, ECDSA signature and ECDH
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Table 5. Comparison of clock cycles for ECDH and ECDSA*

Elliptic Curve Implementation ECDH Key Exchange ECDSA Signature

NIST P192

Our SMCOS 2,282 2,852
MR[24] 2,855 3,423

CICOS[27] 3,117 3,672
OpenSSL[21] 6,206 6,781

Secp256k1

Our SMCOS 950 1,291
CICOS[27] 1,429 1,737

libsecp256k1[23] 1,103 1,438
OpenSSL[21] 12,285 13,063

Numsp256d1
Our SMCOS 1,401 1,996
CICOS[27] 2,085 2,418

MSR ECClib[18] 3,816 2,653

*Entries are 103 clock cycles measured on a ARM Cortex-A9 processor.

key exchange based on SMCOS obtain better performance on ARM Cortex-
A9 platforms than other methods. There are two main reasons responsible for
the results: 1) performing an ECDSA signature or ECDH key exchange often re-
quires thousands or even tens of thousands of modular multiplication operations;
2) the SMCOS multi-precision modular multiplication has better performance
than other methods for these ECC implementations.

6 Conclusions

In this paper, we introduce an optimization technique to improve the perfor-
mance of multi-precision modular multiplication on ARM NEON platforms.
More specifically, we propose a design and implementation of prime field multi-
plication for specific modulus, called SMCOS, to make full use of the computing
power of SIMD co-processors for ECC. On the ARM Cortex-A9 platform, our
SMCOS method performs modular multiplication of NIST P192, Secp256k1, and
Numsp256d1 within only 205, 310 and 306 clock cycles, which are roughly 32%
faster than MR method of Pabbuleti et al. and about 47% faster than CICOS
method of Seo et al.

The SMCOS modular multiplication can be applied to other ECC algorithms
as primitives. At the same time, one of the most obvious future work is to apply
the proposed modular multiplication routines to Intel-AVX processors.
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