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Abstract. Bootstrapping is a crucial subroutine of fully homomorphic
encryption (FHE), where a homomorphic encryption scheme evaluates
its own decryption circuits. Homomorphic modular reduction is a crucial
part of bootstrapping a BGV ciphertext.
In this paper, we investigate the homomorphic modular reduction tech-
nique. We propose a new homomorphic modular reduction algorithm
based on the idea of “blind rotation”. This new homomorphic modular
reduction procedure requires no basic homomorphic operations, hence
it has lower noise accumulation and more suitable for implementing.
Furthermore, we also resort to the blind rotation to construct a new
bootstrapping procedure for the BGV scheme. We analyze the noise
performance and the computational complexity of our scheme. The re-
sults illustrate that our new bootstrapping scheme achieves low noise
accumulation so that the lattice approximation factor for the underlying
worst-case lattice assumption is smaller than Chen and Zhang’s work.
Meanwhile, the complexity of our bootstrapping scheme is comparable
with their scheme.

Keywords: Homomorphic encryption · Bootstrapping · Modular Re-
duction.

1 Introduction

Fully homomorphic encryption (FHE) is an emerging cryptographic primitive
that enables homomorphic computations on encrypted data without decryption.
In 2009, Gentry [18, 19] proposed the blueprint for achieving fully homomorphism
and constructed the first FHE scheme. After Gentry’s breakthrough, many FHE
schemes emerge [6, 5, 15, 3, 29, 24, 13].

Almost all existing HE schemes include “noise” in ciphertexts, and the “noise”
accumulates during homomorphic operations. When the “noise” rises up to some
extent, ciphertexts cannot be decrypted correctly. To address this problem, Gen-
try proposed a technique called bootstrapping in [18] to refresh ciphertexts.
Generally, a bootstrapping procedure is to evaluate decryption function homo-
morphically on encryptions of secret key. Bootstrapping is a computationally
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fairly expensive procedure, and it is the main bottleneck of making FHE schemes
practical. Therefore, there are many studies aimed at improving the efficiency
of bootstrapping to make FHE faster.

Currently, researches of improving bootstrapping are pursued following t-
wo main approaches. The first approach, studied in [2, 17, 7, 9, 23, 4, 31], is to
present bootstrapping techniques for HE schemes based on the Gentry-Sahai-
Waters (GSW) scheme [24]. These schemes try to decrease the cost of boot-
strapping a single ciphertext as much as possible, even at the expense of having
to perform bootstrapping after evaluating every gate of the circuit. However, the
above schemes have some limitations that the bootstrapping procedure has to be
performed for essentially every gate of the circuit, and do not support packing
several messages into a single ciphertext. The only exception is [31], since it first
packs a number of LWE ciphertexts into an RLWE ciphertext and then refresh
it.

Another approach explored in [20–22, 1, 25, 26, 32, 14, 12, 11, 8] aims at pro-
viding bootstrapping techniques for FHE schemes that can pack several messages
into one ciphertext and refresh them in parallel. At present, BGV (Brakerski-
Gentry-Vaikuntanathan) HE schemes [5, 21, 16] are one class of the most efficient
somewhat homomorphic encryption (SWHE) schemes that support batching. S-
ince BGV schemes can encrypt a ring element rather than a single bit in one ci-
phertext, they naturally support packing a number of messages into independent
“slots” and performing Single-Instruction-Multiple-Data (SIMD) operations us-
ing the techniques based on Chinese Remainder Theorem (CRT) [34]. Therefore,
many bootstrapping techniques for BGV scheme are studied. While bootstrap-
ping such kind of schemes may be costly, it can simultaneously refresh plenty of
messages in a single bootstrapping execution. Though the bootstrapping schemes
of the first approach can reduce the runtime of bootstrapping a single ciphertext
as much as possible, bootstrapping methods of the batched BGV scheme still
have much better amortized per-bit runtime.

However, in the BGV scheme, the noise of ciphertext grows quadratical-
ly after every homomorphic multiplication, therefore these schemes essentially
incur quasi-polynomial noise when decryption circuits have polynomial multi-
plication levels, and consequently require worst-case lattice assumptions with
super-polynomial approximation factors. [14] is an exception among these works,
which utilizes the techniques of [2] to refresh BGV ciphertexts. These techniques
allow their construction to achieve worst-case assumptions with polynomial ap-
proximation factors.

The decryption function of BGV scheme can be represented as

Dec(c, sk) = µ+ te mod (q, Φm(X)) (1)

where c is the encryption of message µ under the secret key sk, t is a plaintext
modulus, q is a modulus and Φm(X) is a cyclotomic polynomial modulus. There-
fore, a bootstrapping procedure of BGV scheme consists of two steps: homomor-
phic polynomial arithmetic and homomorphic modular reduction. This indicates
that we can make homomorphic modular reduction algorithm more practical so
as to obtain a bootstrapping procedure which has better performance.
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Our Results. In this paper, we investigate the homomorphic modular reduction
algorithm in the procedure of bootstrapping a BGV ciphertext. We propose a
new homomorphic modular reduction algorithm based on the idea of blind rota-
tion used in the FHEW-like scheme [17, 30]. Our new algorithm is suitable for all
RLWE-based HE schemes whose decryption circuits satisfy Equation 1. We ob-
tain a new bootstrapping procedure for BGV. We analyze the noise growth and
the computational complexity. Theoretic analysis results show that our scheme
can bootstrap BGV ciphertexts with polynomial noise and has lower noise ac-
cumulation than Chen and Zhang’s work [14], hence we can achieve smaller
lattice approximation factor for the underlying worst-case lattice assumption.
Meanwile, the computational complexity is comparable with that of [14].

2 Preliminaries

In this paper, we use lower case letters to denote scalers including integers, reals,
e.g. a, and use italic bold lower case letters to denote polynomials, e.g. a. We
use −→a to denote a vector. We write the ceiling, floor and rounding functions as
d·e, b·c, and b·e, respectively. For integers n, t, [n]t represents the reduction of n
modulo t, and [n]t ∈ (−bt/2c, bt/2c].

We use a ← χ to denote sampling a according to the distribution χ, and
use U(S) to denote a uniform distribution whose support is a finite set S. We
denote by χkey a ternary distribution, which samples a value from {−1, 0, 1}.
χerr is used to denote a discrete Gaussian distribution with a standard deviation
σerr. All logarithms in this paper are base two, unless stated otherwise.

2.1 Cyclotomic Rings

In this paper, BGV schemes and our bootstrapping procedure are supposed to
perform over power-of-two cyclotomic rings.

Let N be a power of two, we denote the 2N -th cyclotomic ring by R :=
Z[X]/(XN + 1) and its quotient ring by Rq := R/qR. For a polynomial a ∈ R,
we write a = a0 + a1X + · · · aN−1XN−1, and denote its coefficient vector by
−→a = (a0, a1, . . . , aN−1). We denote the `∞ norm of a as ‖a‖∞ = ‖−→a ‖∞ =
max0≤i<N {|ai|}. There exists a constant δR such that ‖a ·b‖∞ ≤ δR‖a‖∞‖b‖∞
for any a, b ∈ R, and we use the bound δR = 2

√
N for R = Z[X]/(XN + 1).

Let a = a0 +a1X+ · · · aN−1XN−1 be a polynomial in R and m be a positive
integer less than N . Notice that

a ·Xm = a0X
m + · · ·+ aN−1−mX

N−1 + aN−mX
N + · · ·+ aN−1X

N−1+m

= −aN−m − · · · − aN−1Xm−1 + a0X
m + · · ·+ aN−1−mX

N−1 mod XN + 1

The above equation implies that a ·Xm is a cyclic rotation of a with the cycled
entries negated, and that the `∞-norm of a ·Xm is equal to that of a.
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2.2 (Ring) LWE Problems and Ciphertexts

We now introduce the LWE problem and the ring-LWE problem. Firstly, we
bring in the definition of B-bounded distribution.

Definition 1 (B-bounded distribution). A distribution ensemble {χn}n∈N,
supported over the integers or polynomial rings, is called B-bounded if

Pre←χn
[‖e‖∞ > B] = negl(n).

The LWE problem was firstly introduced by Regev in [33].

Definition 2 (Decisional LWE (DLWE)[33]). For security parameter λ, let
n = n(λ), q = q(λ) be integers, and let χ = χ(λ) be a distribution over Z. The
decisional LWE problem (denoted by DLWEn,q,χ) is to distinguish the following
two distributions: In the first distribution, one first draws a secret vector s ∈ Znq
uniformly, and then samples tuples (bi,ai) ∈ Zq × Znq by choosing ai ← Znq
uniformly at random and a noise term ei ← χ, and setting bi = 〈ai, s〉+ ei. In
the second distribution, one samples (bi,ai) uniformly from Zn+1

q .

The RLWE problem was firstly introduced by Lyubashevsky et al. in [28].

Definition 3 (Decisional RLWE (DRLWE)[28]). Let K be a number field
and R be the ring of integers of K. R∨ ⊂ K is the dual fractional ideal of R. Let
χ be a distribution over KR = K⊗QR. The decisional version of RLWE problem
(denoted by DRLWEq,χ) is to distinguish the following two distributions: In the
first distribution, one first draws s← Rq uniformly at random, and samples (a, b)
by sampling a← Rq uniformly, and a noise term e← χ, and setting b = a ·s+e.
In the second distribution, one samples (a, b) uniformly over Rq ×K ⊗Q R.

The theorem below captures reductions from ideal lattice GapSVP (or GapSIVP)
to RLWE, and we state the result in terms of B-bounded distributions.

Theorem 1 (Adapted from [14]). Let R be the m-th cyclotomic ring, and
n = φ(m). Let q = q(n), q ≡ 1 mod m be an integer and B = ω(

√
n log n). Let

χ be a B-bounded distribution. There is a polynomial time quantum reduction
from nω(1)q/B-approximate SVP on ideal lattices in R to DRLWEq,χ.

In the following, we introduce two forms of ciphertexts based on LWE prob-
lem and RLWE problem.

Definition 4 (LWE ciphertexts). Let n, q be positive integers. An LWE ci-
phertext of m ∈ Z under the secret key −→s ∈ Zn is defined as

LWE−→s ,q(m, e) := (−→a , b) = (−→a ,−〈−→a ,−→s 〉+ e+m) ∈ Zn+1
q

where −→a ← U(Znq ) and e is a small error.

Definition 5 (Ring-LWE ciphertexts). Let Q be a positive integer and N
be a power of 2. An RLWE ciphertext of m ∈ R under the secret key s ∈ R is
defined as

RLWEs,Q(m) := (a, b) = (a,−a · s + e + m) ∈ R2
Q

where a← U(RQ) and e is a small error polynomial.
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Sample Extraction. A RLWE ciphertext consists of two polynomials with N
coefficients in R and it is easy to homomorphically extract a coefficient as a
scalar LWE ciphertext with the same key. Let (a, b) = RLWEs,q(m, e) be an
RLWE ciphertext. Multiplication of two polynomials a and s inR can be written
as:

s · a =

N−1∑
i=0

 i∑
j=0

sj · ai−j −
N−1∑
j=i+1

sj · ai−j+N

Xi

Let −→s = (s0, . . . , sN−1) ∈ ZN be a vector of coefficients of s. We can extract
LWE ciphertexts LWE−→s ,q(mi, ei) = (−→a (i), bi) for 0 ≤ i < N from a, where

−→a (i) = (ai, ai−1, . . . , a0,−aN−1,−aN−2, . . . ,−ai+1).

We denote this procedure as (−→a (i), bi)← Extracti((a, b)), and we simply write
Extract((a, b)) when i = 0.

2.3 BGV Scheme

The BGV scheme [5, 20] is one of frequently-used RLWE-based HE schemes. In
the BGV scheme, n is the degree of underlying cyclotomic polynomial, t is the
plaintext modulus, and q is the coefficient modulus. In this paper, we assume
that the BGV scheme is defined over R = Z[X]/(Xn + 1) where n is a power
of 2. The plaintext space is Rt = R/tR, and the secret key s is an element of
Rq = R/qR. In practice, each coefficient of s is usually sampled from the ternary
distribution χkey. A BGV ciphertext is a pair (a, b) of elements in Rq.

Specifically, the BGV scheme is essentially parameterized by a sequence of
decreasing moduli qL � qL−1 � · · · � q0. For 0 ≤ ` ≤ L, a level-` ciphertext
(a(`), b(`)) of a message m ∈ Rt under the key s(`) ∈ R satisfies

Dec(a(`), s(`)) = m + t · e(`) mod (q`, Φ(X))

where e(`) is the noise of the ciphertext (a(`), b(`)) and t · ‖e(`)‖∞ � q`. After
each homomorphic operation, modulus q` of level ` needs to be switched to q`−1
of level `− 1 by Modulus Switching, and the corresponding key is also switched
by Key Switching. When the level comes to 0, we cannot perform any more
homomorphic operations and thus require the bootstrapping procedure, i.e. we
have to refresh the ciphertext to obtain a new one with a level-L secret key.

In this paper, we denote a BGV ciphertext of m ∈ Rt under the secret key
s as BGVt

s,q(m, e) ∈ R2
q , where e is an error. Notice that BGVt

s,q(m, e) is in
fact an RLWE ciphertext RLWEs,q(m, t·e). Therefore, the properties of RLWE
ciphertexts introduced in Section 2.2 also work for BGV ciphertexts.

2.4 A Ring Variant of the GSW Scheme

In this section, we adapt the definitions of RLWE′ and RGSW from [30, 27]
to describe a ring variant of the GSW HE scheme [24, 2] over R.
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Let −→g = (g0, g1, . . . , gd−1) ∈ Zd be a gadget vector. Let h ∈ RQ be a
polynomial and g−1(h) = (h0,h1, . . . ,hd−1) ∈ Rd be a gadget decomposition

of h such that h =
∑d−1
i=0 gi · hi. For a power of two modulus Q, we will use a

power gadget vector (1, B,B2, . . . , Bd−1) with a power of two B.
For a gadget vector −→g ∈ Zd, we define

RLWE′s,Q(m) := (RLWEs,Q(g0·m, e0), . . . ,RLWEs,Q(gd−1·m, ed−1)) ∈ R2×d
Q .

In order to explain the homomorphic scalar multiplication, we firstly introduce
the multiplication between a scalar and an RLWE ciphertext. Let c ∈ RQ
be a scalar and RLWEs,Q(m, e) := (a, b). The multiplication between c and
RLWEs,Q(m, e) is defined as

c ·RLWEs,Q(m, e) := (c · a, c · b) = RLWEs,Q(c ·m, c · e).

In the rest of this paper, we regard an RLWE ciphertext as a single element
in the procedure of the scalar multiplication, so we can further generalize the
multiplication between a scalar and an RLWE ciphertext to “inner product”
between a vector of scalars and a vector of RLWE ciphertexts.

On the basis of the above discussion, the homomorphic scalar multiplication
between RLWE′s,Q(m) and a polynomial h ∈ RQ is defined as

h�RLWE′s,Q(m)

= 〈g−1(h), (RLWEs,Q(g0 ·m, e0), · · · ,RLWEs,Q(gd−1 ·m, ed−1))〉

=

d−1∑
i=0

hi ·RLWEs,Q(gi ·m, ei) = RLWEs,Q(

d−1∑
i=0

gi · hi ·m,

d−1∑
i=0

hi · ei)

= RLWEs,Q(h ·m, e′) ∈ R2
Q

The procedure of the homomorphic scalar multiplication h � RLWE′s,Q(m)

produces an RLWE ciphertext RLWEs,Q(h ·m, e′) where e′ =
∑d−1
i=0 hi · ei.

The following lemma states the computational complexity of the homomorphic
scalar multiplication and the upper bound of the error of the resulting ciphertext.

Lemma 1. Let E be an upper bound of error in RLWE′s,Q(m). The homomor-

phic scalar multiplication between RLWE′s,Q(m) and an element h ∈ RQ can

be computed in time Õ(dN), and the error of the resulting RLWE ciphertext is
bounded by 2d

√
NBE.

Proof. Note that computing hi ·RLWEs,Q(gi ·m, ei) requires 2 multiplications
of two elements in R, so the whole procedure requires 2d multiplications. In
addition, the complexity of multiplications for ring elements of R by FFT (Fast
Fourier Transform) is O(N logN). Generally, the time complexity of the homo-
morphic scalar multiplication is no more than Õ(dN).

The error of the output RLWE ciphertext is e′ =
∑d−1
i=0 hi ·ei, and ‖hi‖∞ ≤

B, ‖ei‖∞ ≤ E. Therefore, the error of the output ciphertext is bounded by
2d
√
NBE.
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The form of ciphertexts of our RGSW scheme is defined as follows.

Definition 6 (RGSW ciphertexts). Let Q be a positive integer and N be a
power of 2. Let −→g ∈ Zd be a gadget vector. An RGSW encryption m ∈ R under
the secret key s ∈ R is defined as

RGSWs,Q(m) := (RLWE′s,Q(s ·m),RLWE′s,Q(m)) ∈ R4×d
Q

We can define an external product between an RLWE ciphertext and an
RGSW ciphertext, similar to [9, 10].

Lemma 2 (External Product). Let RLWEs,Q(m1, e) = (a, b) be an RLWE
ciphertext and g−1(a) = (ai)0≤i≤d−1, g

−1(b) = (bi)0≤i≤d−1. Let

RGSWs,Q(m2)

= (RLWE′s,Q(s ·m2),RLWE′s,Q(m2))

= ((RLWEs,Q(gi · s ·m2, e1,i))0≤i≤d−1, (RLWEs,Q(gi ·m2, e2,i))0≤i≤d−1)

be an RGSW ciphertext. The external product between these two ciphertexts is
computed by

RLWEs,Q(m1, e)×RGSWs,Q(m2) = a�RLWE′s,Q(s·m2)+b�RLWE′s,Q(m2).

in time Õ(dN) and produces an RLWE ciphertext RLWEs,Q(m1 ·m2, e
′) where

e′ = m2 ·e+
∑d−1
i=0 aie1,i+bie2,i. If we assume that m2 = Xv with some integer

v, ‖e‖∞ ≤ E1 and ‖e1,i‖∞, ‖e2,i‖∞ ≤ E2, then ‖e′‖∞ ≤ E1 + 4
√
NdBE2.

Proof. The external product is computed as

a�RLWE′s,Q(s ·m2) + b�RLWE′s,Q(m2)

= RLWEs,Q(a · s ·m2,

d−1∑
i=0

ai · e1,i) + RLWEs,Q(b ·m2,

d−1∑
i=0

bi · e2,i)

= RLWEs,Q((a · s + b) ·m2,

d−1∑
i=0

ai · e1,i + bi · e2,i)

= RLWEs,Q(m1 ·m2 + e ·m2,

d−1∑
i=0

ai · e1,i + bi · e2,i)

= RLWEs,Q(m1 ·m2,m2 · e +

d−1∑
i=0

ai · e1,i + bi · e2,i) ∈ R2
Q

In fact, the external product is computed by two homomorphic scalar multi-
plications. Hence, according to Lemma 1, we know the time complexity of the
external product procedure is within Õ(dN).

Since the error of the output ciphertext can be written as e′ = m2 · e +∑d−1
i=0 ai · e1,i + bi · e2,i, then we have ‖e′‖∞ ≤ E1 + 4

√
NdBE2.
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3 New Homomorphic Modular Reduction Algorithm

3.1 The Basic Idea

The basic idea of our homomorphic modular reduction is inspired by the “blind
rotation” technique used in [17, 9, 10].

Notice that 〈X〉 = {1, X, . . . ,XN−1,−1, . . . ,−XN−1} forms a cyclic group
in R = Z[X]/(XN + 1). If we set q = 2N , then Zq ∼= 〈X〉. This means that we
can map an integer v ∈ Zq to an element Xv of the group 〈X〉. Note that the
degree of a test polynomial is at most N in R, but there are q = 2N possible
values for v ∈ Zq, and we have to verify every possible value of v to obtain [v]t.
Therefore, we cannot use the test polynomials similar to the one proposed in [9].

We observe that, for v ∈ [0, q − 1] and i ∈ [0, N − 1],

the constant term of X−v ·Xi =


1, i = v,

−1, i = v − q/2,
0, otherwise.

holds. This result can be used to find v from the range {0, 1, . . . , q−1}. However,
this fact is not sufficient yet, since there are two possible non-zero values of the
constant term of X−v ·Xi (i.e., 1 or -1). What we want is that the constant term
of X−v · Xi is equal to 1 whenever i = v or i = v − q/2. Fortunately, we find
that, for 0 ≤ i < N and v ∈ {0, 1, . . . , q − 1},

the constant term of

⌊
1

2
Xi ·X−v +

1

4

⌉
=



⌊
3

4

⌉
= 1, i = v,⌊

−1

4

⌉
= 0, i = v − q/2,⌊

1

4

⌉
= 0, otherwise.

the constant term of

⌊
−1

2
Xi ·X−v +

1

4

⌉
=



⌊
−1

4

⌉
= 0, i = v,⌊

3

4

⌉
= 1, i = v − q/2,⌊

1

4

⌉
= 0, otherwise.

holds. Let αi be the constant term of
⌊
1
2X

i ·X−v + 1
4

⌉
and βi be the constant

term of
⌊
− 1

2X
i ·X−v + 1

4

⌉
for 0 ≤ i < N . Utilizing the above equations, we can

design the following method to obtain [v]t for v ∈ {0, 1, . . . , q − 1}:

N−1∑
i=0

(αi · [i]t + βi · [i+N ]t) = [v]t
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As a toy example, let q = 2N = 8 and v = 5. We can obtain that α0 =
b 14e = 0, α1 = b− 1

4e = 0, α2 = b 14e = 0, α1 = b 14e = 0, and that β0 = b 14e = 0,
β1 = b 34e = 1, β2 = b 14e = 0, β3 = b 14e = 0. Hence, we have that

3∑
i=0

(αi · [i]t + βi · [i+N ]t) = β1 · [1 + 4]t = [5]t.

3.2 Homomorphic Modular Reduction

In this subsection, we elaborate our new homomorphic modular reduction al-
gorithm. The entire HomModRed procedure is formalized in Algorithm 1.
Lemma 3 states the correctness of the homomorphic modular reduction and the
noise performance of this procedure.

Algorithm 1 The HomModRed Algorithm

Input: An RLWE ciphertext RLWE2s,Q(X−v, 2te) = (a, b) ∈ R2
2N

Output: An LWE ciphertext LWE−→s ,Q([v]t, e
′) //−→s is the coefficient vector of s

1: (−→a , b)← (
−→
0 , 0);

2: for i = 1 to N − 1 do
3: (a, b)← X · (a, b);
4: (c,d)← (a,

⌊
1
2
b + 1

4

⌉
), (c′,d′)← (−a,

⌊
− 1

2
b + 1

4

⌉
);

5: (−→c , d)← Extract((c,d)), (−→c ′, d′)← Extract((c′,d′));
6: (−→a , b)← (−→a , b) + [i]t · (−→c , d) + [i + N ]t · (−→c ′, d′);
7: end for
8: return (−→a , b);

Lemma 3. Let RLWE2s,Q(X−v, 2te) = (a, b) where 0 ≤ v ≤ 2N − 1 and
‖e‖∞ ≤ E. There exists an algorithm HomModRed that on input (a, b), out-
puts an LWE ciphertext LWE−→s ,Q([v]t, te

′) in time O(N2), where |e′| ≤ tNE/2.

Proof. At the i-th loop, we have that

(c,d) = (a ·Xi,

⌊
1

2
(−a ·Xi · 2s + 2te ·Xi +X−v ·Xi) +

1

4

⌉
)

= (a ·Xi,−a ·Xi · s + te ·Xi +

⌊
1

2
X−v ·Xi +

1

4

⌉
),

(c′,d′) = (−a ·Xi,

⌊
−1

2
(−a ·Xi · 2s + 2te ·Xi +X−v ·Xi) +

1

4

⌉
)

= (−a ·Xi,a ·Xi · s− te ·Xi +

⌊
−1

2
X−v ·Xi +

1

4

⌉
).
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Hence, we have that (−→c , d) and (−→c ′, d′) satisfy

(−→c , d) = (−→c ,−〈−→c ,−→s 〉+ te+ α),

(−→c ′, d′) = (−→c ′,−〈−→c ′,−→s 〉 − te+ β),

where −→s is the coefficient vector of s, e is the constant term of e·Xi, α is the con-
stant term of

⌊
1
2X
−v ·Xi + 1

4

⌉
and β is the constant term of

⌊
− 1

2X
−v ·Xi + 1

4

⌉
.

Therefore, after N − 1 iterations, (−→a , b) can be represented as

−→a =

N−1∑
i=1

[i]t
−→c + [i+N ]t

−→c ′,

b = −〈−→a ,−→s 〉+ t

N−1∑
i=1

([i]t − [i+N ]t)ei +

N−1∑
i=1

([i]tαi + [i+N ]tβi).

According to the discussion in Section 3.1, we have that

b = −〈−→a ,−→s 〉+ te′ + [v]t

where e′ =
∑N−1
i=1 ([i]t − [i + N ]t)ei,0, therefore (−→a , b) is an LWE ciphertext of

[v]t under the key −→s .
In one loop, Step 3 in Algorithm 1 is just to perform cyclic rotation with the

cycled entries negated on coefficients of a, b, and Step 5 is just to extract and
shuffle several coefficients from polynomials. We think these two steps hardly
contribute to the computational complexity of the whole algorithm. Step 4 in
Algorithm 1 is to perform scalar multiplications in R, and the computational
complexity of scalar multiplications in R is O(N). Step 6 requires two multipli-
cations between a scalar and a vector of integers and an addition of two vectors
of integers, hence the complexity of this step is O(N). Therefore, the whole
algorithm runs in time O(N2).

Now we start to analyze the noise performance. Based on the properties
of power-of-two cyclotomic ring described in Section 2.1, we can get that ‖e ·
Xi‖∞ = ‖e‖∞ ≤ E, so |ei| ≤ ‖e·Xi‖∞ ≤ E. In addition we know |[i]t − [i+N ]t| ≤
t/2. Therefore, |e′| ≤ tNE/2.

4 Improved Bootstrapping for BGV Scheme

Let the BGV ciphertext to be bootstrapped is BGVt
s,qL(m, e) ∈ R2

qL . The
blueprint of our bootstrapping procedure is described below and illustrated in
Figure 1.

Modulus Switching. One fixes a power of two N and compute a new cipher-
text BGVt

s,2N (m, e′) which encrypts the same plaintext m but has smaller size.
In addition, it needs to be stressed that ‖m + te′‖∞ ≤ N .
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Extraction. BGVt
s,2N (m, e′) is in fact an RLWE ciphertext RLWEs,2N (m, te′).

Here we use Extract to obtain n LWE ciphertexts {LWE−→s ,2N (mi, te
′
i)}0≤i<n

from RLWEs,2N (m, te′), where −→s is the coefficient vector of s.

Blind Rotation. For an LWE ciphertext LWE−→s ,2N (m, te′) = (−→a , b), we use a
blind rotation procedure to get an RLWE ciphertext RLWE2z,Q(X−m̃, 2te′′),

where m̃ = b +
∑n−1
j=0 aj · sj . The output of this step is n RLWE ciphertexts of

the form RLWE2z,Q(X−m̃, te′′).

Homomorphic Modular Reduction. When the above steps are done, we ob-
tain n RLWE ciphertexts. Then, we will apply Algorithm 1 to each of RLWE
ciphertexts, resulting in n LWE ciphertexts {LWE−→z ,Q([m̃i]t, tẽi)}0≤i<n.

Repacking. Finally, we repack the LWE ciphertexts output by the previous
step into one single ciphertext which encrypts m.

Fig. 1. Bootstrapping procedure

In the following, we elaborate two steps of our bootstrapping procedure—
blind rotation and repacking.
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4.1 Blind Rotation

After the Extraction procedure, we obtain n LWE ciphertexts. Each of these
ciphertexts can be represented as LWE−→s ,2N (m, te) = (−→a , b) satisfying

b+ 〈−→a ,−→s 〉 = b+

n−1∑
i=0

ai · si = m+ te.

For an LWE ciphertext LWE−→s ,2N (m, te) = (−→a , b), we start the blind rota-

tion with ACC← RLWE2z,Q(X−b, 0) (For simplicity, we set RLWE2z,Q(X−b, 0) =

(0, X−b). To homomorphically compute X−b−
∑n−1

i=0 ai·si , we need encryption-
s of si, which form the alleged bootstrapping key). The bootstrapping key is
bk = {RGSW2z,Q(s+i ),RGSW2z,Q(s−i )}, where{

s+i = 1, si = 1

s+i = 0, otherwise
,

{
s−i = 1, si = −1

s−i = 0, otherwise
for i ∈ [0, N − 1]

We iteratively compute

RGSW2z,Q(X−ai·si) = I2⊗−→g +(X−ai−1)RGSW2z,Q(s+i )+(Xai−1)RGSW2z,Q(s−i )

where I2 is a 2×2 identity matrix and ⊗ means tensor product. (In fact, I2⊗−→g
is a trivial RGSW encryption of 1 under any key.) The above equation is correct
since si ∈ {−1, 0, 1} and at least one of s+i and s−i is zero. Then we update
ACC← ACC�RGSW2z,Q(X−aisi).

After ACC is updated iteratively, the result is

RLWE2z,Q(X−b−a0s0−···−an−1sn−1 , 2tẽ) = RLWE2z,Q(X−(m+te), 2tẽ)

The BlindRotate algorithm is described in Algorithm 2.

Algorithm 2 The BlindRotate Algorithm

Input: An LWE ciphertext LWE−→s ,2N (m, te) = (−→a , b) ∈ Zn+1
2N ;

A bootstrapping key bk = {RGSW2z,Q(s+i ),RGSW2z,Q(s−i )}};
Output: An RLWE ciphertext RLWE2z,Q(X−(m+te), 2tẽ);
1: ACC← (0, X−b);
2: for i = 0 to n− 1 do
3: ACC← ACC�

(
I2 ⊗−→g + (X−ai − 1)RGSW2z,Q(s+i ) + (Xai − 1)RGSW2z,Q(s−i )

)
;

4: end for
5: return ACC;

The following lemma concludes the noise growth and computational com-
plexity of Algorithm 2.
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Lemma 4. Let LWE−→s ,2N (m, te) = (−→a , b) ∈ Zn+1
2N be an LWE ciphertext and

bk = {RGSW2z,Q(s+i ),RGSW2z,Q(s−i )} be a bootstrapping key. There exists
a BlindRotate algorithm that on input LWE−→s ,2N (m, te) = (−→a , b) ∈ Zn+1

2N and

bk, outputs an RLWE ciphertext RLWE2z,Q(X−(m+te), 2tẽ) in time Õ(dN2),

and ‖ẽ‖∞ is bounded by 4n
√
NdBEbk if error of the bootstrapping key is bounded

by Ebk.

Proof. The correctness of this algorithm is stated above. Here we mainly prove
the computational complexity and the noise performance. The cost of this algo-
rithm is dominated by Step 3 of Algorithm 2, and the operation is essentially an
external product. By Lemma 2, we know the cost of Step 3 is Õ(dN) and error
ei of ACCi at i-th loop satisfies ‖ei‖∞ ≤ ‖ei−1‖∞ + 4

√
NdBEbk. Therefore,

the computational cost of the whole algorithm is no more than Õ(dnN), and the
error of the output ciphertext is bounded by 4n

√
NdBEbk.

4.2 Repacking

As described at the beginning of Section 4, we need a procedure to repack several
LWE ciphertexts into a BGV ciphertext, so we resort to the repacking technique
proposed in [31]. The Repack algorithm is formalized in Algorithm 3, and Lem-
ma 5 illustrates the correctness of the repacking algorithm and the error growth
during this procedure.

Algorithm 3 The Repack Algorithm

Input: {LWE−→z ,Q(mi, tei) = (−→a i, bi)}0≤i<n;
rpk = {BGVt

s,q(zj · gk, ej,k)}0≤j<N,0≤k<d;
Output: BGVt

s,q(m, e); //m(X) =
∑n−1

i=0 miX
i

1: b =
∑n−1

i=0 biX
i;

2: for j = 0 to n− 1 do
3: aj =

∑n−1
i=0 ai,jX

i;
4: (aj,0, . . . ,aj,d−1)← g−1(aj)
5: end for
6: (ã, b̃)← (0, b) +

∑
j,k aj,k ·BGVt

s,q(zj · gk, ej,k);

7: return (ã, b̃);

Lemma 5. Algorithm 3 is an algorithm that on input LWE−→z ,Q(mi, tei) =
(−→a i, bi) for 0 ≤ i < n with error E, and a repacking key

rpk = {BGVt
s,q(zj · gk, ej,k)}0≤j<N,0≤k<d = {(cj,k,dj,k)}0≤j<N,0≤k<d

with error Erepack, outputs a BGV ciphertext BGVt
s,q(m, e) encrypting m =∑n−1

i=0 miX
i in time Õ(dnN), with error at most E + 2

√
ndNErepack.
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Proof. For an LWE ciphertext LWE−→z ,Q(mi, tei) = (−→a i, bi), we have that bi +

〈−→a i,−→z 〉 = mi + tei, i.e., bi +
∑N−1
j=0 ai,j · zj = mi + tei. We also have that∑n−1

i=0 ai,jX
i =

∑d−1
k=0 aj,k · gk, and

BGVt
s,q(zj · gk, ej,k) = (cj,k,dj,k) = (cj,k,−cj,ks + tej,k + zj · gk)

Hence, it holds that

(ã, b̃) = (0, b) +
∑
j,k

aj,k · (cj,k,dj,k)

= (0, b) + (
∑
j,k

aj,kcj,k,−
∑
j,k

aj,ks + t
∑
j,k

aj,kej,k +
∑
j,k

zj · gk · aj,k)

= (0, b) + (
∑
j,k

aj,kcj,k,−
∑
j,k

aj,ks + t
∑
j,k

aj,kej,k +

N−1∑
j=0

n−1∑
i=0

ai,jX
i · zj)

= (
∑
j,k

aj,kcj,k,−
∑
j,k

aj,ks + t
∑
j,k

aj,kej,k +

n−1∑
i=0

(

N−1∑
j=0

ai,j · zj)Xi +

n−1∑
i=0

biX
i)

= (
∑
j,k

aj,kcj,k,−
∑
j,k

aj,ks + t
∑
j,k

aj,kej,k +

n−1∑
i=0

(mi + tei)X
i)

= (
∑
j,k

aj,kcj,k,−
∑
j,k

aj,ks + t
∑
j,k

aj,kej,k + t

N−1∑
i=0

eiX
i + m)

= BGVt
s,q(m,

∑
i

eiX
i +
∑
j,k

aj,kej,k)

Therefore, we obtain a BGV ciphertext which encrypts m =
∑
imiX

i.
Notice that error of the output ciphertext can be written as e =

∑
i eiX

i +∑
j,k aj,kej,k. Since |ei| ≤ E for 0 ≤ i < n, we have ‖

∑n−1
i=0 eiX

i‖∞ ≤ E. Using

‖ej,k‖∞ ≤ Erepack, we get that ‖
∑
j,k aj,kej,k‖∞ ≤ 2

√
ndNErepack Therefore,

the error of the output is at most E + 2
√
ndNErepack.

Step 6 of Algorithm 3 dominates the computational complexity of the en-
tire algorithm. In this step, main operations consist of scaler multiplications
and additions in Z[X]/(Φ(X)). Therefore, this algorithm runs in no more than
Õ(dnN).

4.3 Bootstrapping

Combining HomModRed described in Section 3.2 with BlindRotate and
Repack, we can obtain an improved bootstrapping procedure for BGV scheme.
Let a BGV ciphertext to be bootstrapped be parameterized by a plaintext modu-
lus t, a modulus cyclotomic polynomial Xn+1 with a power of two n, a modulus
q`. The blueprint of our bootstrapping procedure is formalized by Algorithm 4.
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Algorithm 4 The Bootstrap Algorithm

Input: A BGV ciphertext BGVt
s,q`(m, e) = (a, b);

A bootstrapping key bk = {RGSW2z,qL(s+i ),RGSW2z,Q(s−i )}0≤i<n;
A repacking key rpk = {BGVt

s(L),qL
(zj · gk, ej,k)}0≤j<N,0≤k<d;

Output: A level-L BGV-type ciphertext BGVt
s(L),qL

(m, ẽ);

1: BGVt
s(`),2N

(m, e′)←ModSwitch(BGVt
s(`),q`

(m, e));
2: for i = 0 to n− 1 do
3: LWE−→s ,2N (mi, tei)← Extracti(BGVt

s(`),2N
(m, e′));

4: RLWE2z,qL(X−m̃i , ei)← BlindRotate(LWE−→s ,2N (mi, tei),bk);
//m̃i = mi + tei;

5: LWE−→z ,qL
(mi, e

′
i)← HomModRed(RLWE2z,qL(X−m̃i , ei));

6: end for
7: (ã, b̃)← Repack({LWE−→z ,Q(mi, e

′
i), rpk});

8: return (ã, b̃);

In the following, we state two theorems to show the noise growth and com-
putational complexity of the entire bootstrapping procedure based on our new
homomorphic modular reduction algorithm. For parameters used in our boot-
strapping procedure, we set t = O(1), N = Θ(n), qL = poly(n), B = O(1) and
d = O(log n).

Noise analysis. The noise performance of the entire bootstrapping method is
analyzed by the following theorem.

Theorem 2. Given a bootstrapping key with initial noise Ebk and a repack-
ing key with initial noise Erpk, we can bootstrap BGV homomorphic encryption

scheme within Õ((n2.5Ebk + n1.5Erpk)).

Proof. According to Lemma 4, the output ciphertext of BlindRotate has an
error bounded by 4n

√
NdBEbk. By Lemma 1, the error of the output ciphertext

of HomModRed is bounded by tN/2 · E, where E is an upper bound of the
output of BlindRotate. Based on Lemma 5, we know that Repack outputs a
ciphertext whose error is within E′ + 2

√
ndNErpk, where E′ is an upper bound

of the output of HomModRed. In conclusion, Algorithm 4 output a ciphertext
whose error is within 2nN1.5dBEbk + 2n0.5dNErpk = Õ(n2.5Ebk + n1.5Erpk).

Computational Complexity. Computational complexity of our bootstrapping
method is stated by the following theorem.

Theorem 3. The computation complexity of bootstrapping procedure described
in Algorithm 4 is no more than Õ(n3).

Proof. By Lemma 3, 4, 5, we can easily get that the computation complexity of
our bootstrapping procedure is no more than Õ(nN2 +dnN2 +dn2N) = Õ(n3).
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Asymptotic parameters. In the worst case, to make decryption correct at level-L,
we need to ensure that

Õ(n2.5Ebk + n1.5Erpk)M+1 ≤ qL
2t

Therefore qL = Õ(n2.5Ebk + n1.5Erpk)M+1, where M can be any positive con-
stant integer that is chosen at first and independent of dimension n and security
parameter λ. For instance, if we set Ebk = Erpk = ω(

√
n log n) and M = 1, then

qL = Õ(n6) suffices. According to Theorem 3, the security of our scheme can be
relied on the hardness of Õ(n5.5)-approximate SVP. The similar result in [14] is
that the security of their scheme relies on Õ(n6.5)-approximate SVP. The follow-
ing table illustrates the comparison results between Chen and Zhang’s work and
ours. The results show that the computational complexity of our bootstrapping
procedure is almost the same with the CZ17 scheme in terms of algorithm com-
plexity, but our scheme is more suitable for implementing than the CZ17 scheme.
For noise performance, our bootstrapping scheme has lower noise accumulation
than that of [14], hence it allows to use worst-case complexity assumption with
lower approximation factors.

Table 1. Comparison with CZ17 scheme.

Time Complexity Noise Growth Hard Problem

Our scheme Õ(n3) Õ(n6) GapSVPÕ(n5.5)

CZ17 Õ(n3) Õ(n7) GapSVPÕ(n6.5)

5 Conclusion

Bootstrapping technique is a pivotal component to construct a fully homomor-
phic encryption scheme. The computational cost of bootstrapping procedure has
a major influence on the performance of the entire FHE scheme. Meanwhile, it
is vital for a bootstrapping scheme to incur polynomial noise since it requires
worst-case lattice assumptions with polynomial approximation factors. There-
fore, it is worthy to study a a better bootstrapping procedure with polynomial
noise.

In this paper, we investigate the homomorphic modular reduction algorithm
in the procedure of bootstrapping BGV scheme. We use the idea of blind rotation
to design a new homomorphic modular reduction algorithm and apply it to
bootstrapping BGV scheme. We carry out an analysis of the noise accumulation
and the computational cost. The results show that our bootstrapping scheme
incurs polynomial noise accumulation and has lower noise growth, therefore our
improvement decreases the approximate factor for the underlying worst-case
lattice assumption from Õ(n6.5) to Õ(n5.5). Moreover, our new homomorphic
modular reduction can be applied independently to other applications where
one needs to perform modular reduction homomorphically.
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16. Doróz Y., Hu Y., Sunar B.: Homomorphic AES evluation using the modified LTV
scheme. Des. Codes Crypt. 80(2), 333-358, 2016.

17. Ducas L., Micciancio D.: FHEW: Bootstrapping homomorphic encryption in less
than a second. Advances in Cryptology, Eurocrypt 2015. Lecture Notes in Computer
Science 9056, 617-640, 2015.

18. Gentry C.: A fully homomorphic encryption scheme[D]. Stanford University, 2009.



18 Ruiqi Li and Chunfu Jia

19. Gentry C.: Fully homomorphic encryption using ideal lattices. ACM Sypmosium
on Theory of Computing, STOC 2009, 169-178, 2009.

20. Gentry C., Halevi S., Smart N.P.: Better bootstrapping in fully homomorphic en-
cryption. Topics in Cryptology, PKC 2012. Lecture Notes in Computer Science
7293, 1-16, 2012.

21. Gentry C., Halevi S., Smart N.P.: Fully homomorphic encryption with polylog
overhead. Advances in Cryptology, Eurocrypt 2012. Lecture Notes in Computer
Science 7237, 465-482, 2012.

22. Gentry C., Halevi S., Peikert C., Smart N.P.: Ring switching in BGV-style homo-
morphic encryption. Security and Cryptography for Networks, SCN 2012. Lecture
Notes in Computer Science 7485, 19-37, 2012.

23. Gama N., Izabachène M., Nguyen P.Q., Xie X.: Structural lattice reduction: Gener-
alized worst-case to average-case reductions and homomorphic cryptosystems. Ad-
vances in Cryptology, Eurocrypt 2016. Lecture Notes in Computer Science 9666,
528-558, 2016.

24. Gentry C., Sahai A., Waters B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. Advances in
Cryptology, Crypto 2013. Lecture Notes in Computer Science 8042, 75-92, 2013.

25. Halevi S., Shoup V.: Algorithms in HElib. Advances in Cryptology, Crypto 2014.
Lecture Notes in Computer Science 8616, 554-571, 2014.

26. Halevi S., Shoup V.: Bootstrapping for HElib. Advances in Cryptology, Eurocrypt
2015. Lecture Notes in Computer Science 9056, 641-670, 2015.

27. Kim A., Deryabin M., Eom J., et al.: General bootstrapping approach for RLWE-
based homomorphic encryption. IACR Cryptol. ePrint Arch. 2021/691.

28. Lyubashevsky V., Peikert C., Regev O.: On ideal lattices and learning with errors
over rings. Advances in Cryptology, Eurocrypt 2010. Lecture Notes in Computer
Science 6110, 1-23, 2010.
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