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Abstract. Constructing lattice-based fully secure attribute-based en-
cryption (ABE) has always been a challenging task. Although there are
many selective secure ABE schemes from the hardness of learning with
errors (LWE) problem, it is hard to extend them to fully security, s-
ince the dual system technique in pairing-based cryptography cannot be
applied to lattice-based constructions.
In this paper, we take a different approach: constructing fully secure
ABE from another primitive called noisy linear functional encryption
(NLinFE) which can be constructed from LWE problem. We give a fully
secure ciphertext-policy ABE scheme for CNF formulae which security
relies on the security of NLinFE and hardness of LWE. Since current
constructions for NLinFE only satisfy bounded collusion security, our
resulting scheme is also bounded collusion only, but it can be easily ex-
tended into unbounded security if unbounded NLinFE can be shown
to exist. Also, since existing NLinFE schemes are inefficient, we give a
new construction for NLinFE with better efficiency, hence our ABE con-
struction is more efficient than other existing bounded collusion ABE/FE
schemes.

Keywords: Attribute-based encryption, Noisy Linear Functional En-
cryption, LWE, Lattice-based cryptography

1 Introduction

Attribute-based Encryption (ABE for short) was first brought by Sahai and
Waters in 2005 [37]. In an ABE scheme, the decryption is correct only if the
provided attribute set satisfies a certain access policy. By using different types
of access policies, ABE can handle flexible access control matters, without using
complex key distribution techniques. There are mainly two types of ABE, one
is called key-policy ABE (KP-ABE) [25], other is called ciphertext-policy ABE
(CP-ABE) [10]. In KP-ABE, the access policy is embedded in the decryption
key, while the ciphertext is related to a set of attributes; in CP-ABE, the access
policy is embedded in the ciphertext, and attributes are related to the decryp-
tion key, held by the users. In [13], ABE is considered as a special case of a more
generalized primitive called functional encryption (FE), which given an encrypt-
ed data Enc(x), calculate the function output f(x) of an encrypted message for
a certain class of function class f ∈ F .
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Most of these early ABE schemes [25, 10, 33, 19, 41, 36] are from a weak se-
curity model, which is called selective security. In a selective security model,
the adversary must first give the challenge policy (for CP-ABE) or challenge at-
tribute set (for KP-ABE) before it was allowed to get the public key and query
for secret keys. It is easy to see that the selective security model greatly restricts
the ability of the adversary, and cannot handle many types of real world attacks.

Many researchers focus on removing the restriction to get full security for
ABE schemes. Many different approaches have been proposed, but the most
successful one among them is the dual-system encryption method, given by Wa-
ters in 2009 [40]. Although the original method is for IBE and HIBE, which are
only simplified versions of ABE, it was soon used to construct fully secure ABE
schemes for various access policies, as in [29, 30, 9, 42, 27, 18, 28].

The schemes above are constructed in bilinear groups, which suffer from
quantum attacks. Recently, many researchers have been working on construct-
ing ABE schemes using lattice assumptions, such as learning with error (LWE)
problem [4, 3, 14]. Lattice-based ABE schemes are not only quantum secure, but
also more powerful than schemes in bilinear groups, as they support much richer
classes of access policies, even for arbitrary circuits [23, 12, 16].

However, the existing schemes are only selective secure, except for some re-
cent works [38, 26] that can only support a quite weak class of access policies.
Since the original dual-system method is highly related to the properties of pair-
ing in bilinear groups, it was not known whether there exists an analogue for
dual-system in lattice, which could be used to prove the full security of lattice-
based ABE schemes. This question has been raised in many earlier works, and
has been considered as a long time open problem in lattice-based cryptogra-
phy. In this paper, we present a similar method for constructing fully secure
lattice-based ABE schemes using noisy linear functional encryption (NLinFE),
also give a CP-ABE scheme supporting CNF policies and prove its full security
in the standard model.

The security properties of our constructed CP-ABE scheme rely on the se-
curity properties of the underlying NLinFE scheme. With bounded collusion
public-key NLinFE in [7] (eprint version), and secret-key NLinFE in [1, 6], we
get both a fully secure bounded collusion CP-ABE and a fully secure secret-key
CP-ABE from lattice assumptions. We also give a construction for NLinFE with
weaker security which only supports random key queries, but outperforms [7] in
the ciphertext size, hence get a bounded collusion CP-ABE which has shorter
ciphertexts. If public key unbounded NLinFE can be proven to exist, we can
simply construct a fully secure unbounded CP-ABE supporting CNF policies,
which beats all current results.

1.1 Related Works

There are currently a few researches working on lattice-based fully secure identity-
based encryption (IBE)[2, 17, 15, 43], which can be considered as ABE which ac-
cess policy is point function. These security proofs rely on various primitives,
such as admissible hash or pseudorandom functions. It is not known how these
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techniques can be used for other access policies. In [23], the authors claimed
that using a result from [11], the selective security of the scheme can be extend-
ed to full security assuming the subexponential hardness of LWE. Despite the
non-standardness of the hardness assumption, it seems that this method cannot
be extended into CP-ABE schemes. In [16, 24], the authors focused on semi-
adaptive security of ABE schemes. Although stronger than selective security, it
is still weaker than full security.

In [38], the author gave the first fully secure ABE scheme (other than IBE)
from standard LWE assumption using a new primitive called conforming cPRF,
which is a huge step forward. However, the access policy is only t-CNF for a
constant t, which means that each clause exactly contains t literals. A similar
construction is from [26] which supports inner products. These are weaker than
our access policy, which is (unrestricted) CNF. The authors claimed that the
access policy is only related to the expressibility of the conforming cPRF, how-
ever, constructing conforming cPRF supporting various access policies seems to
be extremely difficult. Despite the complexity in the conforming cPRF itself,
the function needs to be evaluated through key-homomorphic encryption [12],
which makes the scheme almost impossible for implementation, while our scheme
is more simple and efficient for implementation.

In [39], a fully secure decentralized ABE is constructed from inner product
encryption based on LWE assumption [5]. The idea of using NLinFE in our
scheme is partly borrowed from the use of (non-approximate) IPE in their work.
Their construction is also with bounded collusion. We note that our result highly
overlaps with this work. (Using similar techniques, it seems that our scheme can
also be made decentralized, but we will not discuss that in this paper.) However,
the number of calls to IPE is related to the vector dimension of IPE, hence the
number of key queries, while our number of calls to NLinFE is only related to
the access policy, which leads to a more efficient scheme.

It seems that fully secure ABE with bounded collusion can also be instanti-
ated by fully secure functional encryption with bounded collusion as in [22, 21, 5,
7]. However, since these constructions are for arbitrary polynomial circuits, their
schemes have larger ciphertexts, and are more complex and hard to implement
compared with ours.

The table below compares the ciphertext size between this work and other
ABE or FE schemes with bounded collusion, where Q is the number of key
queries. We also point out that in [8], the authors introduced a new technique on
any bounded collusion schemes, such that the ciphertext size which is polynomial
in Q becomes polynomial in the security parameter λ and linear in Q (e.g. the
ciphertext size of our construction becomes O(Qλ log λ) instead of O(Q logQ)).
This does not change the fact that our ciphertext size is smaller than others.

2 Preliminaries

Notations. x ← χ for a distribution χ means that x is sampled from χ. x ← X
for a set X means that x is uniformly random chosen from X. For any odd
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Table 1: Compare with other bounded collusion ABE and FE

Supporting Functions Ciphertext Size CT Size with [AV19]

GVW12[22] P/poly O(Q4) O(Qλ4)
AR17[7] P/poly O(Q2) O(Qλ2)
WFL19[39] 0-1 LSSS O(Q2 logQ) O(Qλ2 log λ)
This work CNF O(Q logQ) O(Qλ log λ)

modulus q, Zq and the operation mod q takes value from [− q−1
2 , q−1

2 ]. We say
that ε is negligible in λ, if ε < 1/Ω(λc) for any c > 0 for sufficently large λ. For
two distributions X,Y , let ∆(X,Y ) be the statistical distance between X and
Y . ‖.‖ is the 2-norm, while ‖.‖∞ is the infinity norm.

2.1 Conjunctive Normal Form

Definition 2.1. Let L be a set of literals (a literal is either α or ¬α for some
variable α), and T1, ..., Tk ⊆ L be a set of clauses.

A conjunctive normal form (CNF) is a boolean function f =
∧k
i=1(

∨
Ti),

which inputs a set of literals L ⊆ L (for each variable α, α and ¬α not both in

L), and outputs the value f(L) =
∧k
i=1(

∨
Ti(L)). Here

∨
Ti(L) = 1 if and only

if Ti ∩ L 6= ∅.
Let l = |L|, and we label the literals in L by 1 to l.

Note that we do not consider the relationship between α and ¬α, and sim-
ply let them be two different elements. Such representation does not lower the
expressibility of CNF policy. In fact, our definition is stronger than boolean for-
mulas: for an attribute (literal) set L, we allow that both α and ¬α are not in
L, which means that we “do not care” the value of α, as in [19].

2.2 Ciphertext-Policy Attribute-based Encryption

Definition 2.2. A CP-ABE scheme for CNF formula f consists of four algo-
rithms (Setup,Enc,KeyGen,Dec):

– Setup(1λ) → (mpk,msk): The setup algorithm gets as input the security pa-
rameter λ, and outputs the public parameter mpk, and the master key msk.

– Enc(mpk, f,m) → ctf : The encryption algorithm gets as input mpk, a CNF
formula f , and a message m ∈M. It outputs a ciphertext ctf . Note that the
policy is known if we know the ciphertext.

– KeyGen(msk, L)→ skL: The key generation algorithm gets as input msk and
a set of literals L. It outputs a secret key skL.

– Dec(skL, ctf )→ m: The decryption algorithm gets as input a secret key and
a ciphertext, and outputs either ⊥ or a message m ∈M.

The CP-ABE scheme is correct if and only if the decryption algorithm returns
the correct message when f(L) = 1, and returns ⊥ when f(L) = 0.
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Definition 2.3. A CP-ABE scheme is fully secure, if for any adversary, the
advantage of winning the following CPA-CP-ABE game is negligible:

Setup. The challenger runs Setup and gives the adversary mpk.
Phase 1. The adversary submits a set of literals L for a KeyGen query.

These queries can be repeated adaptively.
Challenge. The adversary submits two messages m0 and m1 of equal length,

and a CNF formula f , and f(L) = 0 for all previously queried L. The challenger
chooses a random bit b ∈ {0, 1}, and encrypts mb under f . The encrypted ci-
phertext ctf is returned to the adversary.

Phase 2. The adversary repeats Phase 1 to get more secret keys. Each
queried L must have f(L) = 0.

Guess. The adversary outputs a guess b′ for b.
The advantage of an adversary A in the CPA-CP-ABE game is defined by

AdvABE
A (λ) = |Pr[b′ = b]− 1/2|.

2.3 Lattice and Smoothing Parameters

Definition 2.4. Let b1, ...,bn be a set of vectors in Rm for m ≥ n. A lattice Λ
is defined as {

∑n
i=1 cibi : c1, ..., cn ∈ Z}, and b1, ...,bn is called a basis of Λ.

Definition 2.5. [34]
Given its center c ∈ Zm, for any vector x ∈ Zm, let ρs,c(x) = exp(−π‖x− c‖2/s2).
For a lattice Λ and c ∈ Zm, the discrete Gaussian distribution DΛ,s,c is

defined as:

DΛ,s,c(x) =
ρs,c(x)∑
v∈Λ ρs(v)

.

DΛ,s,c is sometimes also written as DΛ+c,s, Λ + c is a lattice coset. We also
write ρs(Λ) =

∑
v∈Λ ρs(x).

There is an important property for lattice called smoothing parameter, de-
fined as below:

Definition 2.6. [32] For any n-dimensional lattice Λ and ε > 0, the smoothing
parameter ηε(Λ) is the smallest s such that ρ(Λ∗ − {0}) ≤ ε, where Λ∗ = {x ∈
Rn : ∀v ∈ Λ, 〈x,v〉 ∈ Z}.

The following properties for lattice are related to its smoothing parameter,
and will be used in our proof.

Lemma 2.1. [20] For any n-dimensional lattice Λ, ε > 0, and any ω(
√

log n)
function, there is a negligible ε(n) for which ηε(Λ) ≤ ω(

√
log n)/λ∞1 (Λ∗), λ∞1 (Λ∗)

is the length of shortest non-zero vector in Λ∗.

Lemma 2.2. [20] For any n-dimensional lattice Λ, c ∈ span(Λ), real ε ∈ (0, 1),
and s ≥ ηε(Λ), Prx←DΛ,s,c [‖x− c‖ > s

√
n] ≤ 1+ε

1−ε · 2
−n.

Lemma 2.3. [38] Let y ∈ Z, the statistical difference between DZ,σ and DZ,σ+y
is at most |y|/σ.
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2.4 Lattice Trapdoor and Learning with Error

The following lemma in [20, 31] shows that there exists a trapdoor and a preimage
sampling algorithm for discrete Gaussian distribution.

Lemma 2.4. [20, 31] There is an efficient randomized algorithm TrapSamp(1n, 1m, q)
that, given n ≥ 1, q ≥ 2, m = Ω(n log q), outputs A ∈ Zn×mq and a “trapdoor”
T such that the distribution of A is negl(n)-close to uniform.

Moreover, let Λ⊥u (A) = {x : Ax = u} (which is a lattice coset). Then
there is an efficient randomized algorithm SamplePre that for any u ∈ Znq ,

s = Ω(
√
n log q), SamplePre(A,T,u, s) outputs a vector r ∈ Zm, which dis-

tribution is statistically close to DΛ⊥u (A),s (with negligible distance).

We sometimes omit the parameter s if there is no confusion.
The following lemma is required for our security proof:

Lemma 2.5. Let (A,T)← TrapSamp(1n, 1m, q), and (A′,T′)← TrapSamp(1n
′
, 1m, q),

n′ > n, and we write A′ =
(
Ā
Ã

)
, Ā ∈ Zn×mq , and Ã ∈ Z(n′−n)×m

q . Then there
exists s > 0 such that the following two distribution are statistically indistin-
guishable:

– A,x← SamplePre(A,T,u, s);
– Ā, x̄← SamplePre(A′,T′,

(
u
b

)
, s), where b← Zn′−nq .

Proof. See Appendix A. ut

Now we introduce our hardness assumption: the (decisional) learning with
error (LWE) problem, first introduced in [35]. It has the nice property called
worst-case to average-case reduction: solving LWE on the average is as hard as
(quantumly) solving GapSVP and SIVP problems in the worst case.

Definition 2.7 (LWE problem). [35] For a vector s ∈ Znq called the secret, the
LWE distribution As,χ over Znq × Zq is sampled by choosing a ← Znq uniformly

at random, choosing e← χ, and outputting (a, b = sTa + e mod q).
The decisional learning with errors (LWE) problem LWEn,q,χ,m is that given

m independent samples (ai, bi) ∈ Znq × Zq where the samples are distributed
according to either As,χ for a uniformly random s or the uniform distribution,
distinguish which is the case with non-negligible advantage.

For parameters, it is often required that m = poly(n), q = O(2n
ε

) for some
ε > 0, and χ is the discrete Gaussian. We say that the distribution χ is β-
bounded, if |χ| ≤ β with overwhelming probability. We can choose appropriate
parameters for χ to be β-bounded given β = poly(λ) such that LWEn,q,χ,m is
hard.

We give a lemma which will be used in our proof:

Lemma 2.6. For s← Znq , let {(ai, bi)}i∈[m] be sampled from As,χ. Let M ⊆ [m],
and {(a′i, b′i)}i∈[m] be defined as: for i ∈M , (a′i, b

′
i)← As,χ, otherwise (a′i, b

′
i) is

uniformly random. Then {(ai, bi)}i∈[m] and {(a′i, b′i)}i∈[m] are indistinguishable
assuming the hardness of LWEn,q,χ,m.
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Proof. Let {(a∗i , b∗i )}i∈[m] be a set of m uniformly random samples, then it is
indistinguishable with {(ai, bi)}i∈[m] from the hardness of LWEn,q,χ,m. For those
i ∈M , we replace only (a∗i , b

∗
i ) by LWE samples from As,χ to get {(a′i, b′i)}i∈[m],

and the two are also indistinguishable from the hardness of LWEn,q,χ,m. ut

Below we also use another assumption called mheLWE [5], which hardness
can be reduced to the standard LWE assumption.

Definition 2.8. [5] Let q,m, t be integers, σ be a real and τ be a distribution
over Zt×m, all of them functions of a parameter n. The multi-hint extended-
LWE problem mheLWEn,q,σ,m,t,τ is to distinguish between the distributions of the
tuples: (A,A · s + e,Z,Z · e) and (A,u,Z,Z · e), where A ← Zm×nq , s ← Znq ,
u← Zmq , e← Dm

Z,σ, and Z← τ .

Lemma 2.7. [5] Let n ≥ 100, q ≥ 2,t < n and m with m = Ω(n log n) and
m ≤ nO(1). There exists ξ ≤ O(n4m2 log 5/2n) and a distribution τ over Zt×m
such that the following statements hold:

– There is a reduction from LWEn−t,q,σ,m in dimension to mheLWEn,q,σξ,m,t,τ
that reduces the advantage by at most 2Ω(t−n);

– It is possible to sample from τ in time polynomial in n;
– Each entry of matrix τ is an independent discrete Gaussian τi,j = DZ,σi,j ,ci,j

for some ci,j ∈ {0, 1} and σi,j ≥ Ω(
√
mn logm);

– All rows from a sample from τ have norms ≤ ξ without a negligible proba-
bility.

3 Noisy Linear Functional Encryption with Bounded
Collusion

In this section, we construct an indistinguishability-based secure noisy linear
functional encryption scheme with random key queries. Our construction is sim-
ilar to the inner-product encryption scheme in [5].

Definition 3.1. An NLinFE scheme consists of the following algorithms:

– Setup(1λ, 1l): output a pair (PK,MSK).
– KeyGen(MSK,x): for x ∈ Zlq, output a secret key skx.

– Enc(PK,y): for y ∈ Zlq, output a ciphertext cty.
– Dec(cty, skx): Output an approximate inner product for y,x.

An NLinFE scheme is γ-correct if for any cty ← Enc(PK,y), skx ← KeyGen(MSK,x),
|Dec(cty, skx)− 〈y,x〉| mod q ≤ γ except for a negligible probability.

Now we give our construction for NLinFE with random keys.

– Setup(1λ, 1l): Let τ be a distribution over Z(l+1)×m as in the definition of
mheLWE. Sample A← Zm×nq and Z← τ (as defined in Lemma 2.7), compute

U = Z ·A ∈ Z(l+1)×n
q . Let PK = (A,U) and MSK = Z.
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– KeyGen(MSK,x): Given a vector x ∈ Zl which is indistinguishable from
DZl,σ, let x̄ =

(
x
0

)
, return the secret key skx = (x, zx := x̄TZ ∈ Zm).

– Enc(PK,y): To encrypt a vector y ∈ Zlq, let ȳ =
(
y
α

)
, α ← Zq. Sample

s ∈ Znq , e0 ← Dm
Z,σ, e1 ← Dl+1

Z,σ′ , and compute ct = (c0 = A · s + e0, c1 =
U · s + e1 + ȳ).

– Dec(ct, skx): Let ct = (c0, c1), compute µ = 〈x, c1〉 − 〈zx, c0〉.

Note that we add restrictions on x in each KeyGen query, such that x is
indistinguishable from a specific distribution: say, DZl,σ. This limits the usage
of our NLinFE scheme. However, it is enough to construct the required ABE
scheme.

Correctness. Since 〈x,y〉 = 〈x̄, ȳ〉, we see that (〈x̄, c1〉 − 〈zx, c0〉)− 〈x,y〉 =
〈x̄, e1〉−〈zx, e0〉. By Lemma 2.2, we have that ‖x̄‖ ≤ σ

√
l, ‖zx‖ ≤ σmax{σi,j}l

√
m,

‖e0‖ ≤ σ
√
m, ‖e1‖ ≤ σ′

√
l. So the scheme is γ-correct for γ ≥ σσ′l+σ2 max{σi,j}lm.

We define the fully indistinguishability-based security by the following inter-
active game:

Definition 3.2. An NLinFE scheme with random keys is fully β-indistinguishability-
based secure, if for any adversary, the advantage of winning the following game
is negligible:

Setup. The challenger runs the Setup algorithm and gives the adversary
PK.

Phase 1. The adversary submits a vector x for a KeyGen query which
distribution is indistinguishable from DZl,σ. The challenger answers with a secret
key skx for x. These queries can be repeated adaptively.

Challenge. The adversary chooses two challenge messages y0,y1 and gives
it to the challenger. The challenger first checks whether for all queried x, there is
|〈x,y0−y1〉| ≤ β. If this does not hold, then the challenger aborts. Otherwise, it
chooses a random bit b ∈ {0, 1}, and returns cty = Enc(PK,yb) to the adversary.

Phase 2. The adversary repeats Phase 1, under the restriction that each
queried x satisfies that |〈x,y0 − y1〉| ≤ β.

Guess. The adversary outputs a guess b′ for b, and the winning advantage
is defined as |Pr[b′ = b]− 1/2|.

Theorem 3.1. For some properly chosen σ, τ, σ′, q, n, l < n and m = Θ(n log q),
the NLinFE scheme above is fully indistinguishability-based secure with k-bounded
collusion for k ≤ l/3, assuming the hardness of mheLWEn,q,σ,m,l,τ .

Proof. The proof of this theorem is similar to the proof in [5]. We refer the
readers to Appendix B.

We see that the number of maximal key queries can be bounded by l/3
where l is the vector dimension, hence the vector dimension must grow linearly
in Q. We note that in order to successfully decrypt, the modulus q should also
grow polynomially in the vector dimension, so it leads to a ciphertext size of
O(Q logQ). This is better than [7] where the modulus q grows exponentially in
the vector dimension, which leads to O(Q2) ciphertext size.
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4 Fully Secure CP-ABE Scheme for CNF policies

4.1 Construction

Let NLinFE be γ-correct and β-indistinguishability-based secure as in Section
3. We choose a β-bounded error distribution χ, and β/γ = O(2−λ

ε

) for some
ε > 0. The CP-ABE scheme is constructed as follows:

– Setup(1λ, 1l): Let l be the maximal number of literals. Sample l+1 uniformly
random matrixes in Zn×mq along with trapdoor: (A1,T1), ..., (Al,Tl), (A,T),
and a uniformly random vector u ∈ Znq . Run NLinFE.Setup l + 1 times
to generate (PK1,MSK1), ..., (PKl,MSKl), (PK,MSK). Output mpk =
(A1, ...,Al,A,u, PK1, ..., PKl, PK), and msk = (T1, ...,Tl,T,MSK1, ...,
MSKl,MSK).

– KeyGen(msk,L): Randomly choose a ∈ Znq . Sample x ∈ Zm such that Ax =
a+u, and use NLinFE.KeyGen(MSK,x) to generate an NLinFE secret key
K. For each literal i ∈ L, sample xi ∈ Zm such that Aixi = a, and use
NLinFE.KeyGen(MSKi,xi) to generate an NLinFE secret key Ki. Return
the secret key K, {Ki}i∈L.

– Enc(mpk, f, µ): Let T1, ..., Tk be clauses in f . Generate uniform s1, ..., sk ∈
Znq . For each j ∈ Ti, let Ci,j = NLinFE.Enc(PKj , s

T
i Aj). Let C = NLinFE.Enc

(PK, (
∑k
i=1 si)

TA), and C ′ = (
∑k
i=1 si)

Tu +µbq/2c+ ē, ē← χ. Return the
ciphertext ({Ci,j}i∈[k],j∈Ti , C, C

′).
– Dec(ctf , skL): First check if L satisfy the policy f . If f(L) = 1, then for each
i ∈ [k], there is at least one literal li ∈ L∩Ti, let di = NLinFE.Dec(Kli , Ci,li).

Let d = NLinFE.Dec(K,C). Calculate (
∑k
i=1 di)−d+C ′, if the value is close

to 0, return 0; if the value is close to q/2, return 1.

Theorem 4.1. Let q > 4(l + 1)γ + 4β, and NLinFE is γ-correct. Then the
CP-ABE scheme above is correct.

Proof. First, by the correctness of NLinFE, for j ∈ L ∩ Ti, di = sTi Ajxj + ei =

sTi a + ej , |ej | ≤ γ. Also, d = (
∑k
i=1 si)

TAx + e = (
∑k
i=1 si)

T (a + u) + e, |e| ≤ γ.

So (
∑k
i=1 di)− d+C ′ = µbq/2c+

∑k
i=1 ei− e+ ē, which is (l+ 1)γ+ β-close

to 0 or bq/2c. Since (l + 1)γ + β < q/4, we can get the correct message. ut

Now we give the security result of the scheme above.

Theorem 4.2. The construction above is fully secure under bounded collusion,
assuming the existence of an indistinguishability-based secure NLinFE scheme
with bounded collusion and the hardness of LWE problem.

We combine Theorem 4.2, Theorem 3.1 and Lemma 2.7, and immediately
get the following result:

Corollary 4.3 The construction above is fully secure under bounded collusion,
assuming the the hardness of LWE problem.
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4.2 Hyper-functional Keys and Semi-functional Ciphertexts

Now we are ready to prove Theorem 4.2. But before we start the security proof,
we first define hyper-functional secret keys and semi-functional ciphertexts.

Hyper-functional key. For a hyper-functional key, we not only change the
key generation algorithm, but also the setup algorithm. In Setup, instead of

generating A along with its trapdoor, we generate A′ ∈ Z(n+1)×m
q along with

its trapdoor T′. We write the first n rows of A′ as A, and the last row as ãT ,
which means that A′ =

(
A
ãT

)
. A is included in the public key as normal. We also

generate t← Znq .
For KeyGen queries, we first sample e′, e← χ. Let x← SamplePre(A′,T′,(

a+u
tT (a+u)+e′+ē+e

)
). Then we have (ãT − tTA)x = e′ + ē + e ≈ 0. Let K ←

NLinFE.KeyGen(MSK,x) and other key elements generated the same as normal.
We say that the secret key is hyper-functional related to ãT − tTA.

Note that we also say that a the secret key is “normal”, if x← SamplePre(A′,
T′,
(
a+u
b

)
) for b← Zq.

For the indistinguishability between hyper-functional and normal keys, we
have the following lemma:

Lemma 4.4 Let (A0,T0) ← TrapSamp(1n, 1m, q). For i ∈ [Q] and ai ← Znq ,

xi0 = SamplePre(A0,T0,a
i). Let (A′,T′)← TrapSamp(1n+1, 1m, q), xi1 = SamplePre(A′,

T′,
(

ai

a′i+ei

)
), where A′ =

(
A1

ã

)
, ei ← χ, a′

i ∈ Zq. Then (A0, {xi0}i∈[Q]) is compu-

tationally indistinguishable from (A1, {xi1}i∈[Q]) assuming the hardness of LWE.

Proof. We prove the lemma by showing the following distributions are pairwise
indistinguishable (either statistical or computational).

– (1) Let (A′′,T′′)← TrapSamp(12n+1, 1m, q), A′′
T

= (AT
2 |ĀT |āT ). Let xi2 =

SamplePre(A′′,T′′, (ai
T |b̄iT |b̄i)

T
), where b̄i ← Znq and b̄i ← Zq. By Lemma

2.5, we have (A0, {xi0}i∈[Q]) is statistically indistinguishable from (A2, {xi2}i∈[Q]).

– (2) We first choose b̃i ← Znq and write b̄i = b̃i + a′
i
. This does not change

the distribution.
– (3) We first choose s ← Znq , let b̄′

i
= sT b̄i + ei + a′

i
, and let x′2

i
=

SamplePre(A′′,T′′, (ai
T |b̄iT |b̄′i)

T
). By the hardness of LWE problem, any

adversary cannot distinguish between b̄i, b̃i and b̄i, sT b̄i + ei, hence cannot
distinguish between xi2 and x′2

i
.

– (4) Let ã = ā− ĀT s, and we have ãTx′2
i

= a′
i
+ ei.

– (5) This time we write A′′
T

= (AT
2 |ĀT |ãT ), and set x′′2

i
= SamplePre(A′′,

T′′, (ai
T |b̄iT |a′i + ei)

T
). Then x′2

i
and x′′2

i
are from the same distribution.

– (6) By Lemma 2.5, (A2, {x′′2
i}i∈[Q]) is statistically indistinguishable from

(A1, {xi1}i∈[Q]).
ut

Semi-functional ciphertext.
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A ciphertext is semi-functional, if the ciphertext element C is NLinFE.Enc(PK,

(
∑k
i=1 si − t)TA + ã) instead of NLinFE.Enc(PK, (

∑k
i=1 si)

TA).
It follows directly from the indistinguishable security of NLinFE that a semi-

functional ciphertext element is indistinguishable from a normal one if all secret
keys are hyper-functional.

Along with hyper-functional keys and semi-functional ciphertexts, we also
define temporary hyper-functional keys and i-temporary semi-functional cipher-
texts, which will be used in our security proof. We note that in our definition,
“hyper-functional” and “temporary hyper-functional” form two independent di-
mensions: a temporary hyper-functional key can be either normal or hyper-
functional.

Temporary hyper-functional key. Let l be the number of literals. Like the
definition of hyper-functional keys, we not only change the key generation algo-
rithm, but also the setup algorithm. In Setup, instead of generating Aj , j ∈ [l]

along with its trapdoor, we generate A′j ∈ Z(n+1)×m
q along with its trapdoor T′j .

We write the first n rows of A′j as Aj , and the last row as ãj
T , which means

that A′j =
(Aj

ãjT

)
. Aj is included in the public key as normal.

For KeyGen queries, let L be the queried literal set. For j ∈ L, let xj ←
SamplePre(A′j ,T

′
j ,
(

a
tT a+e′+ej

)
), where ej ← χ, and if the key is normal, we

sample e′ ← χ, if the key is hyper-functional, we use the same e′ as in the
generation of x. Then we have (ãj

T − tTAj)xj = e′ + ej ≈ 0. Let Kj ←
NLinFE.KeyGen(MSKj ,xj). We say that the secret key is temporary hyper-
functional related to {ãTj − tTAj}j∈S .

We can also use Lemma 4.4 to prove the indistinguishability between normal/hyper-
functional keys and temporary hyper-functional keys.

i-Temporary semi-functional ciphertext. A ciphertext is i-temporary semi-
functional, if each ciphertext element Ci,j is NLinFE.Enc(PKj , (si− t)TAj + ãj)
instead of NLinFE.Enc(PKj , s

T
i Aj).

It follows directly from the indistinguishability-based security of NLinFE
that a temporary semi-functional ciphertext element is indistinguishable from a
semi-functional one if all secret keys but those skL, L ∩ Ti = ∅ are temporary
hyper-functional.

4.3 Security Proof

We first give the outline of our proof.

– Switch all queried secret keys into hyper-functional keys.
– Switch the challenge ciphertext into semi-functional ciphertext.
– For the p-th query in Phase 1 which challenge literal set is L:
• Switch all secret keys into temporary hyper-functional secret keys.
• Switch the ciphertext into i-temporary semi-functional ciphertext such

that L ∩ Ti = ∅.
• Switch the p-th secret key into a normal one using LWE assumption.
• Switch the ciphertext into a non-temporary semi-functional ciphertext.
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• Switch all secret keys into non-temporary normal or hyper-functional
secret keys.

– For queries in Phase 2, and i ∈ [k], k is the maximal number of clauses:

• Switch all secret keys into temporary hyper-functional secret keys.

• Switch the ciphertext into i-temporary semi-functional ciphertext.

• Switch all Phase 2 secret keys such that L ∩ Ti = ∅ into a normal one
using LWE assumption.

• Switch the ciphertext into a non-temporary semi-functional ciphertext.

• Switch all secret keys into non-temporary normal or hyper-functional
secret keys.

– Now C is uniformly random, independent with any queried secret keys. We
further switch C ′ into a uniformly random element, and thus have our result.

Now we define the game sequence.

Game 0 is the original game.

Game 1: Each queried secret key is a hyper-functional key. Game 0 and
Game 1 are indistinguishable by Lemma 4.4.

Game 2: The challenge ciphertext is semi-functional. We first define Game
1a and Game 2a as follows:

– The Setup phase and Phase 1 are the same as Game 1 or Game 2.

– Let Q2 be the maximal number of Phase 2 queries. In the Challenge phase,
before the challenge ciphertext is given, for each r ∈ [Q2], we generate ar ←
Znq , e′

r
, er ← χ, and xr ← SamplePre(A′,T′,

(
ar+u

tT (ar+u)+e′r+ē+er

)
). Let Kr =

NLinFE.KeyGen(MSK,xr).

– In Game 1a, the challenger returns a normal ciphertext, and in Game 2a, it
returns a semi-functional one.

– In the r-th Phase 2 query, we let e′ = e′
r
, e = er, a = ar, and the key

element K = Kr. Other key elements are generated as before.

It is easy to see that Game 1 and Game 1a; Game 2 and Game 2a are
the same from the adversary’s point of view. We now show that Game 1a and
Game 2a are indistinguishable.

For the challenger, instead of generating all Ks and C itself, it now runs a
indistinguishable game for NLinFE, get K by the KeyGen query of NLinFE,
and get C as the challenge ciphertext of NLinFE. Because |(ãT − tTA)x| ≤ 3β
and β/γ = O(2−λ

ε

), we have the indistinguishable result by Theorem 3.1.

Game 2(p), p ∈ [Q1 + 1], Q1 is the number of phase 1 queries: The first
p − 1 Phase 1 keys are normal, and the rest of the keys are hyper-functional;
the challenge ciphertext is semi-functional. Then Game 2(1) is Game 2, and
in Game 2(Q1 + 1), all Phase 1 keys are normal. We prove the following result:

Lemma 4.5 Game 2(p) and Game 2(p + 1) are indistinguishable assuming
the security of NLinFE and the hardness of LWE.
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Proof. We prove this by the following game sequence:

Game 2-1(p): Game 2-1(p) is same as Game 2(p), except that we change
all keys into temporary hyper-functional keys. Game 2-1(p) is indistinguishable
from Game 2(p) according to Lemma 4.4.

Let L be the challenge literal set in the p-th query of Phase 1. So there must
be clause Ti such that L ∩ Ti = ∅. This i will be used in the following games.

Game 2-2(p, j): Game 2-2(p, j) is same as Game 2-1(p), except that for any
Ci,j′ such that j′ ≤ j and j′ ∈ Ti, Ci,j′ is generated as NLinFE.Enc(PKj′ , (si −
t)TAj′ + ãTj′). So Game 2-2(p, 0) is Game 2-1(p), and in Game 2-2(p, l), the
ciphertext is i-temporary semi-functional. We now show that Game 2-2(p, j−1)
is indistinguishable from Game 2-2(p, j).

We define Game 2-2a(p, j) and Game 2-2b(p, j) as follows:

Game 2-2a(p, j): The game is the same as Game 2-2(p, j), except that:

– In the Challenge phase, before the challenge ciphertext is given, we first check
whether j + 1 ∈ Ti. If j + 1 6∈ Ti, the game proceeds as Game 2-2(p, j). If
j+1 ∈ Ti, for each r ∈ [Q2], we generate ar ← Znq , e′

r
, erj+1 ← χ, and xrj+1 ←

SamplePre(A′j+1,T
′
j+1,

(
ar

tT ar+e′r+erj+1

)
). LetKr

j+1 = NLinFE.KeyGen(MSKj+1,x
r
j+1).

– In the r-th Phase 2 query, if j + 1 ∈ Ti, we let e′ = e′
r
, ej+1 = erj+1, a = ar,

and the key element Kj+1 = Kr
j+1. Then, generate other key elements as in

Game 2-2(p, j).

Game 2-2b(p, j): The game is the same as Game 2-2(p, j), except that:

– In the Challenge phase, before the challenge ciphertext is given, we first
check whether j ∈ Ti. If j 6∈ Ti, the game proceeds as Game 2-2(p, j). If
j ∈ Ti, for each r ∈ [Q2], we generate ar ← Znq , e′

r
, erj ← χ, and xrj ←

SamplePre(A′j ,T
′
j ,
(

ar

tT ar+e′r+erj

)
). Let Kr

j = NLinFE.KeyGen(MSKj ,x
r
j).

– In the r-th Phase 2 query, if j ∈ Ti, we let e′ = e′
r
, ej = erj , a = ar, and

the key element Kj = Kr
j . Then, generate other key elements as in Game

2-2(p, j).

It is easy to see that Game 2-2(p, j), Game 2-2a(p, j) and Game 2-2b(p, j)
are the same from the adversary’s point of view. We now show that Game
2-2a(p, j − 1) and Game 2-2b(p, j) are indistinguishable.

For the challenger, instead of generating all Kjs and Ci,j itself, it now runs
a indistinguishable game for NLinFE, get Kj by the KeyGen query of NLinFE,
and get Ci,j as the challenge ciphertext of NLinFE. Since |(ãjT −tTAj)xj | ≤ 2β
and β/γ = O(2−λ

ε

) by assumption, we only need to show that the NLinFE game
can proceed correctly. If j ∈ Ti, all KeyGen queries are made before the challenge
ciphertext, which is legal in the NLinFE game. If j 6∈ Ti, the NLinFE challenge
ciphertext is never required, so all KeyGen queries can be made correctly. Thus
we have the indistinguishable result by Theorem 3.1.

Thus we have that Game 2-1(p) is indistinguishable from Game 2-2(p, l).

Game 2-3(p): The game is the same as Game 2-2(p, l), except that:
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– In the challenge phase, we generate s̄ ← Znq , {si′}i′ 6=i ← Znq , and write Ci,j
for any j ∈ Ti as NLinFE.Enc(PKj , (s̄−

∑
i′ 6=i si′)

TAj + ãj).

– We also write C = NLinFE.Enc(PK, s̄TA + ãT ), and C ′ = (s̄ + t)Tu +
µbq/2c+ ē.

Note that in Game 2-3(p), we implicitly set si = s̄ + t −
∑
i′ 6=i si′ , so that

for the adversary, Game 2-3(p) is the same as Game 2-2(p, l). Now we see that
t only occurs in C ′ and in KeyGen queries. All these occurrences of t take the
form of LWE samples: tTa + e′, and tTu + ē.

Game 2-4(p): For the p-th query, we choose a uniformly random b̃← Zq, and
let x← SamplePre(A′,T′,

(
a

b̃+tTu+ē+e

)
). For i ∈ [l], xi ← SamplePre(A′i,T

′
i,
(

a
b̃+ei

)
).

Game 2-3(p) and Game 2-4(p) are indistinguishable using Lemma 2.6, by
the hardness of LWE problem. We also define Game 2-4a(p), which removes s̄,
and si is uniformly sampled in the challenge phase. Game 2-4a(p) is the same
as Game 2-4(p) from the adversary’s point of view.

Game 2-5(p, j): Game 2-5(p, j) is same as Game 2-4a(p), except that for
any Ci,j′ such that j′ ≤ j and j′ ∈ Ti, Ci,j′ is generated as NLinFE.Enc(PKj′ , s

T
i Aj′ .

So Game 2-5(p, 0) is Game 2-4a(p), and in Game 2-5(p, l), the ciphertext is
(non-temporary) semi-functional.

The indistinguishability between Game 2-5(p, j − 1) and Game 2-5(p, j) is
nearly the same as Game 2-2(p, j − 1) and Game 2-2(p, j), except that this
time, for the p-th query with literal set L, |(ãjT − tTAj)xj | may not be small.
However, since L ∩ Ti = ∅, for each j ∈ Ti where it is required to generate the
ciphertext element Ci,j , the corresponding key element xj does not occur. So
the ciphertext can be generated correctly in the reduction. Now we have that
Game 2-4a(p) is indistinguishable from Game 2-5(p, l).

Game 2-6(p): Game 2-6(p) is same as Game 2-5(p, l) except that in the
p-th KeyGen query, instead of generating random b̃, we sample b← Zq, and set

b̃ = b−tTu− ē−e. Game 2-6(p) is same as Game 2-5(p, l) from the adversary’s
point of view. We can see that Game 2-6(p) is indistinguishable from Game
2(p+ 1) from Lemma 4.4. ut

Game 3(i), i ∈ [k + 1], k is the number of clauses in the challenge access
policy: The Phase 1 keys are normal, and for the Phase 2 keys which challenge
literal set is L, the key is normal iff there exists i′ < i such that L ∩ Ti′ = ∅.
Game 3(1) is the same as Game 2(Q1 + 1). Since L must not satisfy the access
policy, it is easy to see that in Game 3(k + 1), all keys are normal.

Lemma 4.6 Game 3(i) and Game 3(i+1) are indistinguishable assuming the
security of NLinFE and the hardness of LWE.

Proof. The proof is essentially the same as Lemma 4.5. We omit the details here.
ut

Game 4: Game 4 is same as Game 3(k + 1), except that all secret keys
are temporary hyper-functional keys. Game 4 is indistinguishable from Game
3(k + 1) by Lemma 4.4.
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Game 5: Game 5 is same as Game 4, except that the challenge ciphertext
is 1-temporary semi-functional. Using similar discussion from Game 2-2(p, j)
in Lemma 4.5, we have that Game 4 and Game 5 are indistinguishable by
Theorem 3.1.

Game 6: The game is the same as Game 5, except that:

– In the challenge phase, we generate s̄← Znq , {si′}i′ 6=1 ← Znq , and write C1,j

for any j ∈ T1 as NLinFE.Enc(PKj , (s̄−
∑
i′ 6=1 si′)

TAj + ãj).

– We also write C = NLinFE.Enc(PK, s̄TA + ãT ), and C ′ = (s̄ + t)Tu +
µbq/2c+ ē.

Game 6 is the same as Game 5 from the adversary’s point of view. Note that
this time, tTu only occurs in C ′.

Game 7: The game is the same as Game 6, except that in the challenge
phase, C ′ is generated by s̄Tu+v+µbq/2c, v ← Zq. Game 7 is indistinguishable
from Game 6 by Lemma 2.6 from LWE assumption.

Game 8: The game is the same as Game 7, except that in the challenge
phase, we let v′ ← Zq, and v = v′ − s̄Tu − µbq/2c, so C ′ = v′. Game 7 and
Game 8 are the same from the adversary’s point of view. Then in Game 8, the
ciphertext contains no information on µ, so the advantage for any adversary is
1/2. Thus we finish our proof.

5 Conclusion and Future Works

In this paper, we give a construction for lattice-based fully secure ABE schemes
from noisy linear functional encryption, which can be considered as a lattice ver-
sion of the widely used dual-system method from pairing-based cryptography.
Our scheme supports CNF formula as its access policy, and any predetermined
number of key queries. Compared with other methods for constructing bounded
collusion fully secure ABE, our scheme is simpler and has smaller ciphertext
size. Since dual-system encryption has shown to be useful in pairing-based cryp-
tography, we hope that we can also extend our scheme for richer functionalities.

Although our scheme supports only bounded collusion, it is easy to see that
it can be extended into unbounded case if there exists an unbounded NLinFE
scheme. Although in [1], a secret key version of unbounded NLinFE has been
introduced, it is currently unknown how to transform it into a public key scheme.
This shall be our future work.
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A Proof of Lemma 2.5

We first give the following lemma which is proven in [32, 20].

Lemma A.1. [20]
For any ε ∈ (0, 1), there exists η > 0, such that for s ≥ η, ρs(Λ

⊥
u (A)) ∈

[ 1−ε
1+ε , 1] · ρs(Λ⊥0 (A)).
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By Lemma 2.1, we have that the distribution of x is statistically close to
DΛ⊥u (A),s. So we only need to show that the distribution of x′ is statistically
close to DΛ⊥u (A′),s.

It is easy to see that {Λ⊥(uT |bT )T (A′)}
b∈Zn′−nq

forms a partition of the lattice

co-set Λ⊥u (Ā). So by the definition of discrete Gaussian, we have that, for any
c ∈ Λ⊥u (A′), let b = Ãc, we have Pr(x = c) = q−(n′−n)ρs(c)/ρs(Λ

⊥
(uT |bT )T (A′)).

For a negligible ε, we choose s satisfies Lemma A.1. Then we have that for any
b′, ρs(Λ

⊥
(uT |bT )T (A′))/ρs(Λ

⊥
(uT |b′T )T

(A′)) ∈ [ 1−ε
1+ε ,

1+ε
1−ε ].

By definition, we have:

DΛ⊥u (A′),s(c) =
ρs(c)

ρs(Λ⊥u (Ā))
=

ρs(c)∑
b′T∈Zn′−nq

ρs(Λ⊥(uT |b′T )T
(A′))

.

So:

1− ε
1 + ε

· ρs(c)

qn′−nρs(Λ⊥(uT |bT )T
(A′))

≤ DΛ⊥u (A′),s(c) ≤ 1 + ε

1− ε
· ρs(c)

qn′−nρs(Λ⊥(uT |bT )T
(A′))

.

Now we have that the statistical distance between the two distributions is no
more than 2ε, thus we have our result.

B Proof of Theorem 3.1

We prove this by a sequence of interactive games. Let Game 0 be the full security
game defined above.

Game 1: Instead of c1 = U·s+e1+yβ , we compute c1 = Z·c0−Z·e0+e1+yβ .
Game 1 is the same as Game 0.

Game 2: In Game 2, c0 is chosen uniform randomly from Zmq instead of
As + e0. Game 2 is indistinguishable from Game 1 by the hardness of mheLWE.

Now, we remain to prove that in Game 2, the distinguishing advantage for
any adversary is negligible. Let x1, ...,xκ be the largest set of independent vec-
tors in the key query, and we write X = (x1|...|xκ), and κ ≤ k. We write the

ciphertext ctβ = (c0, c
β
1 ). By the construction of our scheme, we only need to

show that any adversary cannot distinguish between (A,ZA,X,XZ, c0, c
0
1) and

(A,ZA,X,XZ, c0, c
1
1) with non-negligible probability.

Let y = c0
1−c1

1 =
(
y0−y1

α0−α1

)
for α0, α1 ← Zq. Since the last row of X is 0, so y

is linearly independent with X except for a negligible probability. We find a short
solution t, such that XT t = 0, yT t 6= 0, the coefficients of t is co-prime, and
‖t‖ = O(poly(n)). The solution exists by Siegel’s Lemma. We append vectors
orthogonal to t,y and linear independent with X to form a invertible n × n
matrix (modulus q), written as X̄ = (X|y|X′).

Given the invertible matrix X̄, we have that (A,ZA,X,XZ, c0, c
0
1) and

(A,ZA,X,XZ, c0, c
1
1) are indistinguishable if and only if (A,ZA,X,XZ, c0, X̄

T c0
1)

and (A,ZA,X,XZ, c0, X̄
T c1

1) are indistinguishable.
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We then write X̄T cβ1 as (XT cβ1 ,X
′T cβ1 ,y

T cβ1 ). By the choice of X′, we have

that X′
T
c0

1 = X′
T
c1

1.
By the definition of β-indistinguishability-based security, we have that |〈xi,y0〉−

〈xi,y0〉| ≤ β. So we have that XT c0
1 = XTZ(c0 − e0) + XTe1 + XTy0 =

XTZ(c0 − e0) + XTe1 + XTy1 + b where ‖b‖∞ ≤ β. By the lemma below, we
show that XTe1 is indistinguishable from XTe1 + b.

Lemma B.1 Given A ∈ Zn×m, where each row of A is independently sampled
from DZm,σ, σ = O(poly(n)), m ≥ 3n, b ∈ Zn, and ‖b‖∞ ≤ β = O(poly(n)).
Then there exists x ∈ Zm and ‖x‖∞ ≤ δ = O(poly(n)) such that Ax = b except
for a negligible probability.

Proof. This proof is using standard methods in linear algebra and number theory,
we only give a proof sketch due to the page limits.

The proof consists of the several steps:

– For A ∈ Zn×m, show that Ax = b has an integer solution iff the deter-
minants of all n × n sub-matrixes of A are co-prime. This is proven by
constructing the elementary row/column transformations that transform A
into I|0.

– Show that for A sampled as defined and each prime p < q, the probability
that the determinants of all n × n sub-matrixes of A are a multiple of p
is negligible, hence the probability of Ax = b has no integer solution is
negligible. This is proven by induction on n: as long as there is at least one
(k − 1)× (k − 1) sub-matrix of A which determinant is not a multiple of p,
there is at least one k× k sub-matrix which determinant is not a multiple of
p except for a negligible probability.

– We write A0 as the first n − 1 rows of A, and aT as the last row of A.
Using Siegel’s lemma, A0x = 0 has a set of linear independent solutions with
norm at most poly(n), we write them as x1, ...,xm−n+1. Let ci = aTxi, then
ci = poly(n) and c1, ..., cm−n+1 are co-prime (otherwise there is no integer
solution for Ax = en, en = (0, ..., 0, 1)T ). By Bezout’s lemma, we construct
d1, ..., dm−n+1 such that di = poly(n) and c1d1 + ... + cm−n+1dm−n+1 = 1,
so d1x1 + ...+ dm−n+1xm−n+1 is an integer solution of Ax = en with norm
at most poly(n).

– Similarly, we construct integer solutions for Ax = ei for i ∈ [n], and use
them to construct a solution for Ax = b with norm at most poly(n).

ut

Now we find r such that XT r = b and ‖r‖∞ ≤ δ, and we can write XTe1 +b
as XT (e1 + r). So we only need to show that e1 and e1 + r are indistinguish-
able. By Lemma 2.3, we can choose large enough σ′ such that e1 is statistical
indistinguishable from e1 + r.

We write Xtop = (X|X′). Now we only need to show that given A,ZA,X,XTZ, c0,X
T
topc

0
1,

yT c0
1 is indistinguishable from yT c1

1. The discussion is exactly the same as The-
orem 2 in [5], except that the vector orthogonal to Xtop here is t, instead of y.
We omit the details here due to the page limits.


