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Abstract. Detecting code flaws in programs is a vital aspect of soft-
ware maintenance and security. Classic code flaw detection techniques
rely on program analysis to check whether the code logic violates certain
pre-define rules. In many cases, however, program analysis falls short of
understanding the semantics of a function (e.g., the functionality of an
API), and thus is difficult to judge whether the function and its related
behaviors would lead to a security bug. In response, we propose an au-
tomated data-driven annotation strategy to enhance the understanding
of the semantics of functions during flaw detection. Our designed Spar-
rowHawk source code analysis system utilizes a programming language
aware text similarity comparison to efficiently annotate the attributes of
functions. With the annotation results, SparrowHawk makes use of the
Clang static analyzer to guide security analyses.
To evaluate the performance of SparrowHawk, we tested SparrowHawk
for memory corruption detection, which relies on the annotation of cus-
tomized memory allocation/release functions. The experiment results
show that by introducing function annotation to the original source code
analysis, SparrowHawk achieves more effective and efficient flaw detec-
tion, and successfully discovers 51 new memory corruption vulnerabilities
in popular open source projects such as FFmpeg and kernel of OpenHar-
mony IoT operating system.

Keywords: Objective function recognition, Programming language un-
derstanding, Neural network, Vulnerability discovery.

1 Introduction

Due to a variety of cyber attacks targeting on software flaws, pursuing secure
programming becomes one of the most essential requirements for all program-
mers. However, a software is commonly comprised by thousands of lines of code,
which is not easy for programmers to be aware of all flaws timely. In the real
world, hackers attack softwares every 39 seconds, averagely 2,244 times per day4.

4 https://www.varonis.com/blog/cybersecurity-statistics/
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The software with security breaches may be exploited by the hackers and finally
data breaches will expose sensitive information and vulnerable users to hackers.
Hence, it is crucial to identify and fix software flaws in time.

To reduce human efforts on analyzing project source code, automated ap-
proaches are propose to explore software flaws. Two types of techniques for
source code analysis, program analysis [29] [40] [50] [52] and machine learn-
ing [37] [24] [25], are mainly introduced. For program analysis based approaches,
they commonly analyze the entire source code and learn the control/data de-
pendencies by conducting abstract interpretation, pattern matching, symbolic
execution to identify. Although such a technique can ensure a significant code
coverage, it is inefficient to construct control/data dependencies among func-
tions when a large amount of code with complex dependencies are involved. To
solve this issue, some researchers proposed machine learning algorithms to learn
patterns of the vulnerable code and then rely on the trained models to discover
software flaws. Different from the program analysis techniques that have to be
executed every time of flaw detection, model training is a one-time effort; thus
it only needs to be trained once and then used for the following detection.

However, the existed machine learning based approaches have a common
drawback — a vast dataset of millions of open source functions that are labeled
appropriately. Since the programming languages are unlike natural languages, it
is impractical to understand how a function behaves by simply regarding each
function as a bag of words. Generally two steps are proceeded: 1) extracting
inter- and intra-dependencies at a fine-grained level. 2) taking the dependency
graph as input for model training. Even though the model training is a one-time
effort, it is time consuming to label millions of open source functions manually
and study the inter- and intra-dependencies of every function.

To address the limitations of the previous machine learning based approaches,
we observe that operations implemented in the function bodies can be inferred
via the function prototypes. Hence, we propose an automated function anno-
tating inspired approach for flaw detection. Since function prototypes consist of
multiple informal terms (e.g., abbreviation, programming-specified words), we
first construct a programming corpus with the posts from StackOverflow [42].
Within the programming corpus, it not only contains the informal terms used in
programming languages, but also includes natural languages that are commonly
used in project programming. In order to extract meaningful word units (sub-
words) from programming corpus, we further utilize Byte Pair Encode (BPE) [39]
and BPE-dropout [34] algorithms to collect a subword collection with occur-
rence frequencies. According to the subword collection, function prototypes are
segmented with meaningful subwords through a Probabilistic Language Model
(PLM). Then we train a Siamese network [3] to embed function prototypes into
vectors, and the annotations of unknown function prototypes will be obtained
by comparing the vectors with a certain type of function prototypes.

Based on the function annotating inspired approach, we build a flaw detec-
tion tool, SparrowHawk. To validate the effectiveness of SparrowHawk, we
conducted experiments targeting on memory-specified flaws, namely, null pointer
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dereference and double free. We labeled functions that are collected from real-
world open source projects including OpenHarmony [33] IoT operating system
and FFmpeg [12] and evaluated the performance of SparrowHawk. With the
enhancement of function annotation, SparrowHawk successfully reported 51
previously unknown memory corruption flaws. We also evaluated whether the
performance of SparrowHawk was influenced when various input data were
provided. We found SparrowHawk still annotated functions effectively and ef-
ficiently even if only a small amount of training material (3,579 functions) were
provided.
Contributions of this paper:

– We proposed an automated annotation-based analysis system that recognizes
the targeted functions accurately without the need of analyzing the corre-
sponding function implementations. While training the annotation model,
only a few labeled dataset are required, which is helpful to reduce the in-
volved human efforts.

– We implemented an efficient flaw detection tool, SparrowHawk, to explore
certain types of flaws based on function annotation. Instead of analyzing the
entire source code of a project, SparrowHawk pinpoints specific target
functions by checking their function names and further identifies whether
the target functions are properly invoked. This function annotation based
flaw detection is data driven and flexible.

– We evaluated the performance of function annotation by providing various
amount of input data and observed that SparrowHawk could still identify
memory operation functions effectively. Moreover, SparrowHawk reported
51 previously unknown flaws from eight open source projects, which indicates
that function annotation enhances classical flaw detection.

Availability. We provided the SparrowHawk executable, instructions of our
experiments, and the tested projects at https://sparrowhawk.code-analysis.
org.

2 Motivation

The existing program analysis based approaches are heavyweight while analyzing
the program source code. We aim to design a system that can annotate each
function accurately without checking the corresponding implementations of the
function body. Lack of the semantic information of function prototypes, the
following challenges are required to be addressed to implement an efficient and
effective annotation based flaw detection.

2.1 Challenges

In order to annotate the targeted functions from source code, the following three
aspects are generally processed:

https://sparrowhawk.code-analysis.org
https://sparrowhawk.code-analysis.org
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– Function Name. By analyzing the semantic meaning of the function name,
it is easily to determine what operations might be performed in its body.

– Function Arguments. According to the input arguments including argu-
ment types and argument names, the attributes of operation objects and
operation types can be retrieved.

– Function Body. Reference to each function body including the implemen-
tation and annotations, the implemented functionalities can be determine.

Although the three aspects are precisely defined for function recognition,
several challenges need to be resolved to determine whether a function is relevant
to memory operation automatically. Details are demonstrated as below.
Challenge I: Natural Language Gap. Instead of using the completed and
formal semantic words, function names are normally comprised by abbrevia-
tions, informal terms, programming-specific terms and project-specific terms.
As these characters are barely appeared in the natural languages, it is difficult
to determine the semantic meaning of a function name automatically.
Challenge II: Function Prototype Correlations. Since there exist strong
correlations between each part of function prototype, it makes the entire se-
mantics extraction form function prototype even more challenging. Even though
some association patterns exist in function prototype, the workload for modeling
the relationships for each type of function by human effort can be unacceptable.
Therefore, for extracting the entire semantics from function prototype auto-
matically, we need a method which can capture different relationships exist in
different function prototypes.
Challenge III: Complex logical structures in function implementation.
Sometimes, determining the functionality of a function only by its function pro-
totype is not enough, and the complex logical structures in function implemen-
tation hinder automated tools to identify its main functionality.

2.2 Insights

Programming Language Aware Word Segmentation. The variety of nam-
ing styles and the usage of informal terms make it difficult to segment each func-
tion name into meaning units. To address Challenge I, we construct a program-
ming corpus which contains not only the context in natural languages, but also
programming-specified terms. Such a programming corpus provides a channel to
connect the programming-specified terms with the natural language context.

Additionally, function names commonly consist of multiple terms. We further
learn how function names are constructed by utilizing a pair encoding algorithm,
which learns the frequent word units appeared in the programming corpus. Based
on the frequent word units, we adopt PLM to conduct function segmentation.
Self-Attention Based Function Prototype embedding. For each word unit
of the function prototype, it is inaccurate and inefficient to extract its semantic
meaning by designing a rule to match the word unit with natural language
context. To address this issue (Challenge II), we propose a self-attention based
neural network encoder to generate function prototype embedding.
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Semantic-Aware Call Graph. Generally, analyzing the function body and
determining its main functionality is a hard work. But fortunately, by analyzing
the function implementation manually, we observe that the functionality infor-
mation about a function can be conveyed by its callee functions. As the semantics
of function prototype can be extracted by the self-attention neural network and
the nodes in call graph structure are function prototypes, thus we can give the
call graph with some semantic information.

Therefore, to solve Challenge III, we propose a method to annotate targeted
function in call graph, and utilize these annotations to understand the imple-
mentation of function.

3 SparrowHawk
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Fig. 1: Workflow of SparrowHawk

For most original flaw detection tools, they generally identify the specific
flaws by analyzing the entire source code, which is inefficient. To resolve this
issue, we propose an annotating inspired detection system, SparrowHawk,
which automatically learns the functionality of each function through the func-
tion prototype and further identifies flaws by analyzing the source code of the
target function.

3.1 Overview

The workflow of SparrowHawk is shown in Figure 1, which include three com-
ponents, Programming Language Aware Word Segmentation, Targeted Function
Annotation, Flaw Detection. We introduce each component in detail as below:
Programming Language Aware Word Segmentation. Functions are named
variously and each function name might consist of multiple informal terms and
programming-specific words, thus it is difficult to learn the functionality of a
function via its name precisely (Challenge I). Instead of analyzing the function
name as a whole, SparrowHawk takes as input a programming corpus to build
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a segmentation model. It further splits each function name into several units of
words (subwords).
Targeted Function Annotation. Taken the subwords as input, SparrowHawk
trains a function annotation model and generates a reference vector from the
target functions in labeled dataset. To annotate unknown function prototypes,
SparrowHawk executes the annotation model to generate function prototype
vectors. It then computes cosine similarities between the reference vector and
the function prototype vectors. If the cosine similarities are higher than a thresh-
old, or their function implementations are matched by annotation rules, Spar-
rowHawk labeled them as targeted functions.
Flaw Detection. After recognizing the targeted functions, SparrowHawk
conducts a source code based program analysis to examine whether the input
source code files contain potential code flaws.

3.2 Programming Language Aware Word Segmentation

SparrowHawk first takes as input the function prototypes and splits them
into subwords for the following semantic analysis. To segment function proto-
types accurately, it is essential to build a corpus that includes the informal terms
and programming languages used for naming functions. Therefore, we collect the
posts of StackOverflow forum containing the context of programming languages
from StackExchange Archive Site [41] which contains rich lexical information of
programming languages. Figure 2 depicts the detailed process of word segmen-
tation.
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Fig. 2: Programming language aware word segmentation

Programming Corpus Construction The significant difference between pro-
gramming language and natural language determines that SparrowHawk could
not rely on the materials with natural languages to guide the following segmen-
tation. However, directly using source code as corpus is neither suitable since it
only contains limited semantic information. Therefore, we created a program-
ming corpus for SparrowHawk using the posts of StackOverflow forum, which
contains both meaningful natural language materials and programming language
texts.

Subwords Collection With the created corpus, SparrowHawk collects mean-
ingful units from it as subwords. Note that a subword may not be a vocabulary,
thus SparrowHawk utilizes the BPE algorithm to collect subwords from the
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corpus by merging the most frequent items at character level. BPE initializes the
input with a sequence of characters and iteratively replace each occurrence of
the most frequent pair with a new item. Figure 3 gives an example of BPE merge
operation. In this example, input text contains three words: memory, mempool,
and memmap. The BPE processing first splits each word to separate characters,
then merges the most frequent item mem and adds the item and its occurrence
frequency to the subword collection.

For efficiency consideration, SparrowHawk only returns a subword that
contains less than 15 characters. To provide a robust subword collecting, Spar-
rowHawk additionally adopt BPE-dropout [34] algorithm to add stochastic
noise during BPE merge operation.

1

2

3

4

5

Input text:      memory,mempool,memmap

Preprocess: m e m o r y, m e m p o o l, m e m m a p

m e → me : me m o r y, me m p o o l, me m m a p

me m→ mem: mem o r y, mem p o o l, mem m a p     

...

Fig. 3: An example of BPE merging operations

PLM based Word Segmentation The collection of subwords (and their oc-
currence frequencies) is used by SparrowHawk to employ a PLM based word
segmentation. SparrowHawk first splits a function prototype using the item
appeared in the subword collection. If there exists only one segmentation result,
then this result is accepted. Otherwise, SparrowHawk uses Equation (1) to
determine which segmentation result should be chosen. For instance, for a seg-
mentation result with subwords A, B, and C, the occurrence frequency proba-
bility of each subword is multiplied to obtain the probability of the segmentation
result. Then SparrowHawk chooses the one with the highest probability.

P (segmentation) =

subwords∏
w∈subwords

P (w) (1)

3.3 Targeted Function Annotation

SparrowHawk identifies certain types of a function (e.g., crypto function, en-
coding function) with an automated function annotation. To annotate a function
, SparrowHawk compares its prototype to a labeled dataset, which contains
manually labeled target functions and non-target functions. SparrowHawk
first trains a Siamese network combined with two identical Transformer en-
coders [45], who share the same parameters. The training starts from randomly
generating either a target pair (two prototypes of target functions) or a non-
target pair (one prototype of target function and the other non-target function)
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from the labeled dataset. Pairs of prototypes are sent to two encoders to calculate
the similarity between two functions.

After the training, SparrowHawk uses one of the improved encoder to gen-
erate embedding vectors for all target functions in labeled dataset, and derives a
reference vector by computing the mean vector of these embedding vectors. This
reference vector helps SparrowHawk efficiently identify a new target function:
if the prototype vector of an analyzed function is similar to the reference vector
(using cosine similarity, 0.5 as the similarity threshold), it belongs to the type
of labeled dataset and is annotated as a target function by SparrowHawk.

In the following, we illustrate the annotation process in detail.

Siamese Architecture Given a set of function prototype pairs (fi, f
′
i) with

ground truth pairing information yi ∈ {+1,−1}, where yi = +1 indicates that
fi and f ′i are similar, or yi = −1 otherwise. We define the embedding of function
prototype fi as ~ei, and the output of Siamese architecture for each pair as

cosine(f, f ′) =
~e>~e

′

||~e|| × ||~e ′ ||
(2)

Then the parameters of function prototype encoder will be trained by mini-
mize the Mean Squared Error Loss Function [32].

Function Prototype Embedding A function prototype generally consists of
four parts: return type, function name, argument types and argument names.
And all these four parts changing the semantic of function prototype to different
degrees. In order to encode a function prototype to a meaningful embedding vec-
tor, SparrowHawk adopts the Transformer encoder as the function prototype
encoder.

Transformer is a powerful attention model whose attention mechanism can
learn the association of words forwardly and backwardly in a sequence. However,
the output of the Transformer Encoder is a context matrix, different to Recurrent
Neural Network, and it does not provide a sentence embedding directly. To
address this issue, we add a pooling layer after the output layer of Transformer
Encoder, introduced by the CLS-token pooling strategy in Sentence-BERT [36],
to take a function prototype as the input, and output a function prototype
embedding.

Similarity Inference After the Siamese network training is completed, we
generate the embedding vectors e1, ..., en for all target function prototypes in
the label dataset, and compute their arithmetic mean ~em as reference vector.
For a given new function prototype ft and its embedding vector ~et, we obtain
its similarity score by calculating cosine similarity with reference vector.

Score(ft) = cos(~et, ~em) =
~e>t ~em

||~et|| × ||~em||
∈ [−1, 1] (3)
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Targeted function Annotation Based on the similarity scores, SparrowHawk
provides two ways to annotate targeted functions. The straightforward way only
needs function prototype to make inference, whereas another way needs function
body and customize the heuristic rules but provides more accurate annotation.

With Only Function Prototype. SparrowHawk simply makes inference by
comparing the similarity scores of the given functions with the threshold infer-
threshold. If the similarity scores are greater than the threshold, then Spar-
rowHawk annotates the these functions as targeted functions.

With Function Implementation and Heuristic Rules. As our observa-
tion that the functionality information of a function can be conveyed through
its callee function, and SparrowHawk has the ability to attribute a function
only by its function prototype, thus SparrowHawk is able to achieve a more
accurate annotation with well-designed heuristic rules on call graph.

1

2

3

4

5

6
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int hl_ctx_create(struct h1_device *hdv,struct h1_fpriv  

*hpriv) {

...

ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);

...

return 0;

}

 static inline void *kzalloc(size_t size, gfp_t flags){

    return kmalloc(size, flags | __GFP_ZERO);

}

Fig. 4: An example of user-defined memory allocation function

Figure 4 is an intuitive example for the memory allocation function anno-
tation task. As we observe the body of function hl ctx create, it is easy to
find that its main functionality of memory allocation is implemented by its
callee function kzalloc. As seeing the body of function kzalloc, kzalloc also
calls a memory allocation function kmalloc to allocate memory. This common
phenomenon exists in many projects, that because developers usually hope to
wrapper lower level functions to achieve performance improvements and bring
convenience by using custom memory allocators and de-allocators,

Therefore, we can take advantage of this property to design some heuris-
tic rules and provide more accurate annotation about memory operation func-
tions. More specifically, we set two different similarity thresholds, recall-threshold
and precision-threshold. The functions whose similarity score lower than recall-
threshold are filtered out, and the remaining functions are annotated as targeted
functions only if they have a callee function whose similarity score is greater
than precision-threshold.
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3.4 Flaw Detection

SparrowHawk creates a flaw report for source code projects by comparing
the usages of targeted functions with the predefined function misuse rules of
program analyzers. First, SparrowHawk extracts function prototypes from
source code files and generates call graphs. Then, according to the function
prototypes and call graphs, SparrowHawk annotates the targeted functions
and passes them to program analyzers to guide the function misuses detection.
Here, SparrowHawk implements a program analyzer to detect null pointer
dereference and double free vulnerabilities in source code.

Having the targeted functions, SparrowHawk performs a flow-sensitive and
inter-procedural static analysis based on symbolic execution. SparrowHawk
maintains two symbolic variables sets, allocation set and deallocation set, to
record the status of memory chunks during the symbolic execution. Once sym-
bolic execution reaches a memory operation function, the symbolic variables of
allocated or deallocated memory chunks will be added to allocation set or deal-
location set, respectively. When the same symbolic variable is added to dealloca-
tion set more than once, SparrowHawk will report a double free vulnerability.
Or the dereference operation related symbolic variable exists in allocation set
and its value of constraint solving equals to zero, then SparrowHawk will
report a null pointer dereference vulnerability.

3.5 Implementation

We relied on several existing tools and modules to fulfil the certain functionali-
ties in SparrowHawk. Clang [7] is embedded as part of the function prototype
extractor to distinguish function prototypes during compiling. The used pro-
gramming corpus is an 80 GB raw XML dataset and the size of meaningful text
is 18 GB after our normalization. To retrieve subwords, SparrowHawk uses
the CharBPETokenizer module in Tokenizers [44] which relies on the BPE and
BPE-Dropout algorithms to segment and regularize words into sequences of sub-
word units. Having the frequency vocabulary, SparrowHawk further executes
WordSegment [48] to segment the function prototype. The Siamese network is
trained relying on Gensim [14] with the implemented Word2vec [31] for subword
embedding training. We further built the Siamese network in TensorFlow [2].
Once the interested function is retrieved, we adopted Clang Static Analyzer [1] to
analyze the source code of each software and identify potential vulnerabilities.

4 Real-world Evaluation

We evaluated SparrowHawk from three perspective, function segmentation,
function annotation, and flaw detection. In specific, the following three research
questions (RQs) are answered:

RQ1: Function Prototype Segmentation. The first step of SparrowHawk
is to segment function prototypes, thus we are curious about how accurate
SparrowHawk is during function prototype segmentation.
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RQ2: Function Annotation. As SparrowHawk relies on the customized
memory operation functions, how effective and efficient is SparrowHawk in
recognizing customized memory operation functions, i.e., memory allocation
functions and memory deallocation functions.

RQ3: Flaw Detection. As SparrowHawk is introduced to detect the spe-
cific flaws (i.e., null pointer dereference and double free), how effective is
SparrowHawk in detecting these flaws?

Since the goal for each research question is different, we collected different
sets of dataset to conduct our experiment.

4.1 RQ 1: Function Prototype Segmentation

To evaluate the segmentation accuracy of SparrowHawk, we compared its
segmentation result with a state-of-the-art tool, NLP-EYE [47], which is proposed
with function prototype segmentation.

Fig. 5: Function name segmentation results comparison between NLP-EYE and
SparrowHawk

Setup. We randomly collected 350 function names from seven programs, i.e.,
Vim [46], ImageMagick [21], GraphicsMagic [18], CPython [8], LibTIFF [28], GnuTLS
[16], and Git [15], 50 function names from each program. Given the 350 function
names, we built our ground truth by manually segmenting each function name.
Then we evaluated the segmentation accuracy of SparrowHawk and NLP-EYE
relying on Levenshtein-inspired distance [23] [38] in which a lower distance rep-
resents a higher accuracy.
Results. The segmentation results of SparrowHawk and NLP-EYE are demon-
strated in Figure 5. We observed that SparrowHawk achieves a lower Leven-
stein distance, i.e., performs better than NLP-EYE. By manually inspecting the
segmentation results, we realized that NLP-EYE fails to distinguish the func-
tion names with abbreviation, information terms and programming-specification
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words. Although a large corpus (i.e., GWTWC [17]) and an adaptive corpus with
a number of program annotations is being used for segmentation, the semantic
meanings of certain informal terms are unable to be learned precisely. For Spar-
rowHawk, we firstly constructed the programming corpus and then applied
BPE and BPE-Dropout to collect subwords, which enable SparrowHawk to
segment function name precisely with the knowledge of programming language.

4.2 RQ 2: Function Annotation

SparrowHawk aims to identify the customized memory operation function, i.e.,
memory allocation functions and memory deallocation functions. We first evalu-
ated the effectiveness of function annotation and then assessed the improvement
with designed heuristic rules.

Setup. We collected 35,794 functions from the source code of ten Linux kernel
drivers including bluetooth, devfreq, mm, memory, media, memstick, message,
mfd, misc, and mmc. Obviously, it is time-consuming and infeasible to manually
verify all functions to build ground truth, Hence, we conducted a semi-automatic
annotating approach which takes the following three steps:

1. We first manually labeled 591 memory allocation functions and 778 memory
deallocation functions in 5,342 functions (15% of the entire functions) as the
initial labeled dataset, and utilized them to train the Siamese network of
SparrowHawk.

2. Next, we randomly chose 19% (5,800/30,492) unlabeled functions and exe-
cuted SparrowHawk to generate similarity scores for these functions. For
functions with similarity scores smaller than −0.9 (around 90% in our exper-
iment), SparrowHawk labeled them as non-target functions but need to
inspect their function prototypes to select the possible target functions and
exam their implementations manually. And the left functions were verified
by both examining their prototypes and implementations manually.

3. With the labeled 5342+5,800 functions, we then repeated step 2 again.
This time we sent the rest unlabeled 24,652 functions as inputs of Spar-
rowHawk.

Finally, all 35,795 functions were labeled which include 2,008 memory allo-
cation functions and 3,001 memory deallocation functions, and the other func-
tions as non-target functions. Although our semi-automatic annotation may not
strictly reflect the ground truth (85% of the functions were annotated relying
on a computer-aided labeling), it significantly increases the scale of the labeled
dataset by introducing a small portion of inaccuracy. Given the labeled dataset,
all the labelled 35,794 functions were used to train the Siamese network again
and the evaluation of function annotation of SparrowHawk was performed on
the trained Siamese network.

Effectiveness As different developers might have various styles to name func-
tions in their projects, we investigated whether the previous trained Siamese
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Table 1: Comparison of memory operation function annotation with and without
heuristic rules of SparrowHawk

Allocation function
annotation

Deallocation function
annotation

Memory operation
function annotation

Function type Allocation Others Deallocation Others target Others

# of
functions

117 2,883 135 2,865 252 5,748

# of correct
annotation

73 / 86 2,853 / 2,875 123 / 127 2,786 / 2,815 196 / 213 5,639 / 5,690

# of error
annotation

44 / 31 30 / 8 12 / 8 79 / 50 56 / 39 109 / 58

Precision 70.8% / 91.4% 60.8% / 71.7% 64.2% / 78.9%

Recall 62.9% / 73.5% 91.1% / 94.0% 77.7% / 84.5%

F1-score 66.3% / 81.5% 72.9% / 81.4% 70.3% / 81.4%

∗ The left side of slash represent the results with only function prototype.
∗ The right side of slash represent the results with function implementations and heuristic
rules.

network can annotate memory operation functions in a different project. There-
fore, we set up a testing dataset by randomly selecting 3,000 functions from the
OpenHarmony [33] IoT operating system and labeled them manually. As a result,
117 memory allocation functions and 135 memory deallocation functions were
identified.

The experiment result is listed in Table 1. SparrowHawk successfully an-
notated 196 memory operation functions out of the 252 memory operation func-
tions, with precision of 62.4%, recall of 77.7% and F1-score of 70.3%. Specifically,
SparrowHawk separately achieved F1-score of 66.3% and 72.9% when it iden-
tified memory allocation functions and memory deallocation functions, respec-
tively. The accuracy to annotate memory allocation functions is lower because
the implementations of memory allocation functions are more complicated.

By analyzing the function prototypes collected from Linux kernel and Open-
Harmony OS, we found that the performance drop is mainly caused by the incon-
sistent naming style. Consider the word “get” as an example, it indicates to fetch
an object from a structure in Linux kernel, whereas developers of OpenHarmony
use it to allocate a memory chunk sometimes. Alternatively, the word “release”
in Linux kernel functions usually represents deallocating a memory space. How-
ever in OpenHarmony OS, it is usually used to release a lock, clean up an object,
or set a flag bit to zero.

Improvement with Heuristic Rules Due to the inconsistent naming style
among projects, SparrowHawk cannot annotate functions accurately based
on function prototypes only. To resolve this issue, we improved SparrowHawk
by embedding customized heuristic rules which analyzes function prototypes as
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well as each function bodies. In order to balance the candidate retrieving and
precision improvement, we set the recall-threshold and precision-thresholds as
-0.9 and 0.95, respectively.

The results in Table 1 show that the effectiveness of SparrowHawk is
improved significantly with the help of the customized heuristic rules. In terms
of the precision, recall, and F1-score of memory operation, SparrowHawk with
the customized heuristic rules improves over SparrowHawk by 22.9%, 8.7%
and 15.7%. Relying on the recall threshold, SparrowHawk can label more
functions as the potential memory operation functions; thus it achieves a higher
recall value. Besides, the precision threshold filtered out the function that did
not invoke any memory operation functions in its function body.

Time cost We conducted our experiment on a server running 64-bit Ubuntu
18.04 with an AMD 3970X CPU (32 cores) running at 2.2GHz, 256 GB RAM
and a GeForce GTX 2080Ti GPU card. We computed the efficiency of Spar-
rowHawk by considering the worst case. Hence, we trained the Siamese net-
work by using 90% of labeled functions. Finally, SparrowHawk averagely cost
5 hours 7 minutes to train the model for memory allocation function and 7 hours
21 minutes to train the model for memory deallocation functions. The time cost
for model training is reasonable because it can be completed within one day and
it is a one-time effort.

4.3 RQ 3: Flaw Detection

According to the annotated memory operation functions, SparrowHawk ana-
lyzes the corresponding functions to check whether there is any memory-related
flaws, i.e., null pointer dereference and double free.

Table 2: Details about collected projects

Number of
Functions

Number of
Allocators

Number of
De-allocator

OpenHarmony 17,893 539 930
Cpython 11,347 436 228
FFmpeg 19,905 227 469
Gnutls 4,478 27 137
Vim 6,090 113 237
BusyBox 4,134 82 134
Curl 2,877 120 327
Gravity 916 60 62

∗All collected in the master branch in May 2021.

Setup. We executed SparrowHawk on eight open source projects, i.e., Open-
Harmony [33], Cpython [8], FFmpeg [12], Gnutls [16], Vim [46], BusyBox [5], Curl [9],
Gravity [19]. SparrowHawk first pinpointed the customized memory operation
functions. Table 2 lists the result of the annotated memory operation functions
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Table 3: Detection results

Null Pointer Dereference Double Free
Reported Identified Confirmed Reported Identified Confirmed

OpenHarmony 41 16 12 128 0 0
Cpython 16 5 5 0 0 0
FFmpeg 37 9 5 43 0 0
Gnutls 4 2 2 10 3 1
Vim 41 0 0 46 4 1

BusyBox 114 1 1 15 1 1
Curl 0 0 0 6 1 0

Gravity 87 9 - 8 0 0

Total 340 42 25 256 9 3

in each project. Reference to the customized memory operation functions, Spar-
rowHawk conducted code analysis to detect flaws.

Results. The detection result is presented in Table 3. In total, SparrowHawk
reported 596 vulnerabilities from the eight projects including 340 null pointer
dereference and 256 double free. By manually inspected the results, we identified
42 null pointer dereference vulnerabilities and 9 double free vulnerabilities.

To further verify the identification correctness, we contacted the project de-
velopers and reported the manual-confirmed vulnerabilities. Finally, 28 vulner-
abilities (i.e., 25 null pointer dereference and 3 double free) are confirmed by
SparrowHawk.

Case Study We demonstrated a representative example to discuss how Spar-
rowHawk detects flaws. The source code snippet of Vim is shown in Figure 6
which contains a double free flaw.

Given the File1, SparrowHawk first extracted all function prototypes and
corresponding function implementations and conducted function annotation to
identify memory operation functions. As a result, it identified a memory alloca-
tion functions (i.e., mem realloc (line 1)) and two memory deallocation functions
(i.e., mem realloc (line 1) and vim free (line 8)).

Having the identified memory operation functions, SparrowHawk executed
Clang Static Analyzer to analyze File2 and identified whether the identified mem-
ory operation functions were being properly invoked. Since there exists a feasible
execution path from vim realloc (line 20) to vim free (line 24) and the two
deallocation function freed the same memory chunk, where the macro function
vim realloc is expanded to function mem realloc in File3, SparrowHawk
reports a double free vulnerability.

As we observed that if the argument bufno is can be controlled, function
vim realloc will free the variable buf list and return NULL, thus the same
memory address will be freed twice by function vim free. According to the
feedback of Vim developers, the argument bufno can be controlled by a netbeans
command, and the vulnerability is patched with a patch number 8.2.1843.
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5 Related Work

We classify the related prior work into two categories: deep learning based flaw
detection and program analysis based flaw detection.

5.1 Deep learning Based Flaw Detection

Recently, deep learning based approaches are being widely used to detect code
flaw automatically. These approaches aim to learn syntactic and semantic repre-
sentations [10], [37], [26], [27] or learn graph structure representations [11], [53]
from source code, and then utilize these representations to detect code flaws.

To learn syntactic and semantic representations, Khanh Dam et al. [10] parses
methods of Java source files into sequences of code tokens and uses Long Short-
Term Memory networks [20] to generate syntactic and semantics features of a
file. Russell et al. [37] creates a custom C/C++ lexer to tokenize source code and
adopts Convolutional Neural Network (CNN) to learn function-level represen-
tations. In order to provide more fine-grained detection, VulDeePecker [27] and
SySeVR [26] extract code slices based on data dependency and convert them to
vector of symbolic representation, and then apply deep learn models to predict
vulnerabilities.

As the aforementioned approaches have limitations on capturing logic and
structure from source code, some works have attempted to learn representations
from graph structures. Based on Code Property Graph (CPG) [49], VulSniper [11]
utilize attention mechanism to encode CPG to a feature tensor and Devign [53]
uses Graph Neural Network [22] to learn node representations.

However, these deep learning based approaches need the heavy efforts of
gathering and labeling a large number flaw dataset, and can not give the precise
reasons about how flaws are caused.

5.2 Program Analysis Based Flaw Detection

Program analysis based methods find flaws in source code by detecting un-
expected behaviors. K-Miner [13] utilizes data-flow analysis to uncover memory
corruption vulnerabilities in Linux kernel. It requires human effort to mark mem-
ory operation functions and performs a source-sink analysis on marked memory
operation functions. Dr.checker [30] focus on control flow and has found diverse
bugs in Linux kernel drivers by using a soundy pointer and taint analysis based
on abstract representation. Moreover, SVF [43] is a static analysis framework
which applies sparse value-flow analysis to detect flaws. Developers can use SVF
to write their own checkers and detect flaws in source code.

To reduce the false positive of static analysis, symbolic execution based ap-
proaches utilize constraint solving to reason feasible paths. As the number of
feasible paths in programs grows exponentially with an increase in program
size, whole-program symbolic execution [6] could encounter the problem of path
explosion. Thus, under-constrained methods like UCKLEE [35], sys [4] and UBI-
TECT [51] are proposed to overcome this problem by executing individual func-
tions instead of whole programs.
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6 Conclusion

In this paper, we present SparrowHawk, an automated annotation-based source
code flaw detection system. SparrowHawk includes a function prototype seg-
mentation tool with the state-of-the-art accuracy, a targeted function annotation
model requires only a few labeled dataset and an efficient source code flaw de-
tection tool for detecting null pointer dereference and double free vulnerabilities.
We demonstrated that SparrowHawk successfully identified 51 unknown flaws
with the help of annotated memory operation functions. Furthermore, Spar-
rowHawk is not limited to detect memory corruptions. Developers can easily
customize SparrowHawk to annotate other types of function, and thus detect
new types of flaws efficiently.
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File1:Vim/src/misc2.c
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void *mem_realloc(void *ptr, size_t size){

    void *p;

    mem_pre_free(&ptr);

    p = realloc(ptr, size);

    mem_post_alloc(&p, size);

    return p;

}

void vim_free(void *x){

    ...

    free(x);

    ...

}
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void *mem_realloc(void *ptr, size_t size){

    void *p;

    mem_pre_free(&ptr);

    p = realloc(ptr, size);

    mem_post_alloc(&p, size);

    return p;

}

void vim_free(void *x){

    ...

    free(x);

    ...

}

File3:Vim/src/vim.h

30

31

# define vim_realloc(ptr, size)  

mem_realloc((ptr), (size))
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# define vim_realloc(ptr, size)  
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static nbbuf_T *nb_get_buf(int bufno){

    buf_list_size = 100;

    ...

    if (bufno >= buf_list_size){

        nbbuf_T *t_buf_list = buf_list;

        incr = bufno - buf_list_size + 90;

        buf_list_size += incr;

        buf_list = vim_realloc(buf_list, 

 buf_list_size * sizeof(nbbuf_T));

        if (buf_list == NULL)

    {

vim_free(t_buf_list);

buf_list_size = 0;

return NULL;

    }

}

}
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static nbbuf_T *nb_get_buf(int bufno){

    buf_list_size = 100;

    ...

    if (bufno >= buf_list_size){

        nbbuf_T *t_buf_list = buf_list;

        incr = bufno - buf_list_size + 90;

        buf_list_size += incr;

        buf_list = vim_realloc(buf_list, 

 buf_list_size * sizeof(nbbuf_T));

        if (buf_list == NULL)

    {

vim_free(t_buf_list);

buf_list_size = 0;

return NULL;

    }

}

}

Fig. 6: A double free vulnerability in Vim
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