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Abstract. We consider the problem of finding low-weight multiples of polynomials over binary
fields, which arises in stream cipher cryptanalysis or in finite field arithmetic. We first devise memory-
efficient algorithms based on the recent advances in techniques for solving the knapsack problem.
Then, we tune our algorithms using the celebrated Parallel Collision Search (PCS) method to decrease
the time cost at the expense of a slight increase in space. Both our memory-efficient and time-memory
trade-off algorithms improve substantially the state-of-the-art. The gain is for instance remarkable
for large weights; a situation which occurs when the available keystream is small, e.g. the Bluetooth
keystream.
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1 Introduction

We consider the following problem:

Definition 1 (The Low-Weight Polynomial Multiple (LWPM) problem). Given a binary poly-
nomial P ∈ F2[X] of degree d and a bound n, find a multiple of P with degree less than n and with the
least possible weight ω, where the weight of a multiple is the number of its nonzero coefficients.

The LWPM arises in stream cipher cryptanalysis, and in efficient finite field arithmetic.
Fast correlation attacks [20,17] against LFSR-based (Linear Feedback Shift Register) stream

ciphers first precompute a low-weight multiple of the constituent LFSR connection polynomial.
In fact, low-weight polynomial multiples are required to keep the bias, of the linear approxi-
mation in a correlation attack, as high as possible so as to reduce the cost of key-recovery or
distinguishing attacks.

Low-weight polynomial multiples find also application in finite field arithmetic. Actually,
von zur Gathen and Nöker[23] found that F2d = F2[x]/(g), where g is a low-weight irreducible
polynomial of degree d, is the most efficient representation of finite fields. However, such
polynomials do not always exist. Brent and Zimmerman [3] proposed an interesting solution:
take an irreducible polynomial f ∈ F2[X] of degree d but possibly large weight, a multiple g of
f with small weight, and work in the ring F2[X]/(g) most of the time, going back to the field
F2d only when necessary.

1.1 Related work

There have been several approaches for computing low-weight multiples of polynomials. Most
methods first estimate the minimal possible weight ω of multiples, of the given polynomial P,
with degree at most n and with nonzero constant term, then look for multiples of weight at
most ω. To estimate the minimal weight, one solves for ωe the following inequality(

n
ωe − 1

)
≥ 2d (1)



where d is the degree of P; the minimal weight ω is the smallest solution. In fact, if multiples
are uniformly distributed, then one expects the inequality to hold. It is worth noting that the
number of such multiples can be approximated byNM = 2−d( n

ω−1
)
.

Given a polynomial P ∈ F2[X] of degree d and a bound n, we summarize below the strategies
used to find a multiple of P of degree at most n and with the least possible weightω. We describe
the time or space complexity using the Big-O notation, which denotes the worst case complexity
of the algorithms. Also, we use the approximation

(n
ω

)
≈ O(nω).

Discrete-log-based techniques They were introduced in [18], then improved and generalized
in [8,19]. They work with discrete logarithms in the multiplicative group of F2d instead of
the direct representation of the polynomials. [8] use a time-memory trade-off to solve the
problem in time O(nd

ω−2
2 e) and memory O(nb

ω−2
2 c). [19] provide a memory-efficient algorithm

that runs in approximately O( 2d

n ). The methods assume however a constant cost of the
discrete logarithm computations, using precomputed tables that do not require excessive
storage. This is not the case if 2d

− 1 is not smooth. Also, the methods assume some condi-
tions on the input polynomial: primitive in case of [8] or product of powers of irreducible
polynomials with coprime orders in case of [19].

Syndrome decoding This technique reduces LWPM to finding a low-weight codeword in a
linear code; a popular problem for which there exist known algorithms to solve it, e.g. the
so-called information-set decoding algorithms [21,5,2,15,13,16]. These algorithms introduce
many parameters to optimize the running time and the memory consumption according to
the problem instance, however, we can approximate the running time by O(Poly(n) · ( n

d )ω),
and the memory complexity by O(dω).

Lattice-based techniques This technique, introduced in [9], reduces the LWPM problem to
finding short vectors in an n-dimensional lattice. The method uses the LLL reduction [12]
to solve the problem in time O(n6) and space O(n · d). Unfortunately, this technique gives
inaccurate results, i.e. fails to find a multiple with the least possible weight, as soon as the
bound n exceeds few hundreds.

Birthday techniques This is by far the standard method for solving the LWPM problem. There
exist a plethora of variations and improvements to this method. The standard one runs in
O(nd

ω−1
2 e) and uses O(nb

ω−1
2 c) of memory. Chose et al. [7] cut down the memory utilization to

O(nb
ω−1

4 c) using a match-and-sort approach. Canteaut and Trabbia [6] introduced a memory-
efficient method for solving the LWPM problem that runs in O(nω−1) and requires only
linear memory. When the degree of the multiple gets very large and there are many low-
weight multiples, but it is sufficient to find only one, Wagner’s generalized birthday paradox
[24] becomes more efficient. For instance, if n ≥ 2d/(1+log2(ω−1)), then this method finds a
weight-ω multiple of P of degree at most n in O((ω − 1)n) and uses O(n) memory.

1.2 Our Approach

We view the LWPM problem as a special instance of the following subset sum problem:

Definition 2 (Group Subset Sum Problem). Let (G, .) be an abelian group. Given a0, a1, . . . , an ∈ G
together with ω, 0 < ω ≤ n

2 such that there exists some solution z = (z1, . . . , zn) ∈ {0, 1}n satisfying

n∏
i=1

azi
i = a0 with weight(z) = ω

The goal is to recover z (or some other weight-ω solution z).
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This definition generalizes that in [10] as it does not impose the group order to be of bitsize
n. It captures then the LWPM problem as follows. Let P be a degree-d polynomial in F2[X].
Consider further the group (Fd

2,+) of d-dimensional vectors over F2, where the group law is the
bitwise addition over F2. A weight-ω multiple 1 +

∑n
i=1 ziXi of P, with nonzero constant term

and degree at most n satisfies:

n∑
i=1

ziai = a0 with ai = Xi mod P, 0 ≤ i ≤ n

Note that the condition on the weight (ω ≤ n
2 ) is not restrictive. Actually, the searched weight ω

is obviously smaller than the weight of P, which is often smaller than d
2 , and thus smaller than

n
2 . Also, for convenience purposes, we consider throughout the document the relative weight
ωn = ω/n.

The (group) subset sum problem is one of the most popular and ubiquitous problems
in cryptography. It has undergone an extensive analysis with a focus on polynomial-memory
algorithms to solve it. In fact, it is known that random-access memory is usually more expensive
than time. Most algorithms for solving the subset sum problem [1,10] try to find as many
representations as possible of the solution; in fact, the more representations there exist the faster
the solution can be found. For example, the folklore algorithm, described in [11], represents the
solution z = x || y as a concatenation of two n

2 -dimensional vectors x and y with weight(x) =
weight(y) = ω

2 . In the same spirit, [1] split the solution z into two n-dimensional vectors x and y
, with weight(x) = weight(y) = ω

2 , that add up to z. Recently, [10] further increase the number of
representations by splitting z into a sum overZ of two integers of smaller weight by exploiting
the carry propagation.

Contributions We view the solution z to LWPM as a collision (x, y) of some random function
f mapping from a set T to itself (in order to use known cycle-finding algorithms to compute
collisions). The set T is determined by how z splits into (x, y). Also, T ought to allow for many
”representations” (x, y) of the solution z, so as to reduce the number of function calls needed
before finding a collision. More precisely, we make the following contributions.
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Fig. 1. Comparison between the
memory-efficient techniques and
our algorithms

First, we present two memory-efficient algorithms for LWPM
that improve the state-of-the-art in polynomial-memory algo-
rithms for LWPM. The idea behind the algorithms consists in
splitting the solution z into two n-dimensional vectors x and y
that add up to z over F2. The weight of both x and y is some
function of ω to be determined.
More precisely, Algorithm 1 assumes and puts in place a
Bernoulli distribution on the representation of z, then determines
the optimal weight φ(ω) to be used for x and y. As a result, we
significantly improve the running time offered by the state-of-
the-art methods, i.e. the birthday and the discrete-log methods
(see Figure 1; the x-axis represents the relative weight ωn = ω/n,
and the y-axis represents the relative exponent log(T)/n of the
time cost T).
Since Algorithm 1 uses a pseudo-random number generator to
establish the desired Bernoulli distribution, it incurs a slight
overhead in the computations. Therefore, we reinforce our con-
tribution with Algorithm 2 which gets rid of the Bernoulli dis-
tribution; the result still substantively outperforms the state-of-the-art (see Figure 1).
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We show the practicality of our technique with an implementation of the algorithms that
confirm our theoretical estimates.

Second, we tune our algorithms via the Parallel Collision Search (PCS) technique [22] to
decrease the running time at the expense of memory. Again, we improve the classic Time-
Memory Trade-off (TMTO) or birthday method, described earlier in the text, in both time and
space (see Figure 2; the x-axis represents the relative weight ωn = ω/n, whereas the y-axis
represents the relative exponent log(T)/n (resp. log(M)/n) of the time (resp. memory) cost T
(resp. M)).
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Fig. 2. Comparison between the classic TMTO and our time-memory trade-off algorithms

The rest of the paper is organized as follows. Section 2 recalls the necessary background and
establishes the notation that will be used throughout the document. Sections 3 & 4 respectively
describe, analyze, and experimentally validate our algorithms. Section 5 compares the perfor-
mance of our algorithms with the state-of-the-art. Finally, the time-memory trade-off tuning of
the proposed algorithms is given in Section 6.

2 Theoretical Background

2.1 Notations and Conventions

Let a, b ∈Nwith a < b. We conveniently write [a, b] := {a, a+1 . . . , b}. For a vector z = (z1, . . . , zn) ∈
{0, 1}n, we denote by weight(z) := |{i ∈ [1,n] : zi = 1}|.ZN denotes the ring of integers modulo N.
F2 denotes the field of two elements where the additive identity and the multiplicative identity
are denoted 0 and 1, as usual. F2[X] refers to the ring of polynomials with coefficients in F2.
R+ denotes the set of positive real numbers.

Let P ∈ F2[X]. deg(P) and weight(P) refer to the degree and weight of P respectively; the
weight of a polynomial in F2[X] corresponds to the number of its non-zero coefficients. In the
text, we identify polynomials in F2[X] with their coefficient vectors. For instance, the sum of
two polynomials in F2[X] is the sum over F2 of their coefficient vectors termwise.
Suppose deg(P) = d. F2[X]/P denotes the ring of polynomials modulo P; addition and multi-
plication are performed modulo P. Finally, (Fd

2,+) refers to the group of d-dimensional vectors
over F2, where the group law + is the bitwise addition and the identity is referred to as 0Fd

2
.
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The Big-O, Θ, and Θ̃ notations. The Big-O notation represents the upper bound of the running
time of an algorithm; it gives then the worst case complexity of an algorithm.

O(g) =
{
f : ∃ c, x0 ∈ R

+ : 0 ≤ f (x) ≤ cg(x) ∀x ≥ x0
}

TheΘ notation represents the upper and the lower bound of the running time of an algorithm.
It is useful when studying the average case complexity of algorithms.

Θ(g) =
{
f : ∃ c1, c2, x0 ∈ R

+ : 0 ≤ c1g(x) ≤ f (x) ≤ c2g(x) ∀x ≥ x0
}

The Θ̃ notation suppresses the polynomial factors in the input. For example Θ̃(2n) suppresses
the polynomial factors in n.

Binomial coefficient. The binomial coefficient
(n

k
)

refers to the number of distinct choices of k
elements within a set of n elements. We have:

(n
k
)

= n!
k!·(n−k)! .

Often, we need to obtain asymptotic approximations for binomials of the form
( n
α n

)
or

( n
bα nc

)
for values α ∈]0, 1[. This is easily achieved using Stirling’s formula: n! = (1 + o(1))

√
2πn

(
n
e

)n
.

Thus
( n
αn

)
≈

1√
2π nα(1−α)

· 2nH(α), where H is the binary entropy function defined as

H(x) := −x log2(x) − (1 − x) log2(1 − x); log2 is the logarithm in base 2. We can then write(
n
αn

)
= Θ

(
n−1/22nH(α)

)
or

(
n
αn

)
= Θ̃

(
2nH(α)

)
Probability laws. For a finite set E, e ∈R E refers to drawing uniformly at random an element e
from E. The PMF of a random variable denotes its probability mass function.

Let X be a random variable, p ∈ [0, 1], and n ∈N. X ∼ Bernoulli(p) signifies that X takes the
value 1 with probability p and the value 0 with probability 1 − p.
X := (X1, . . . ,Xn) ∼ Bernoulli(p,n) means that the Xi are independent and identically distributed
with Xi ∼ Bernoulli(p), for i ∈ [1,n]. X ∼ Binomial(p,n) means that X follows the Binomial
distribution with PMF: Pr[X = k] =

(n
k
)
pk(1 − p)n−k , k ∈ [0,n]. Finally, if X ∼ Bernoulli(p,n),

then the random variable Y corresponding to the number of successes of X follows the binomial
distribution, i.e. Y := weight(X) ∼ Binomial(p,n).

2.2 Random Functions

Birthday paradox. Let E be a finite set of n elements. If elements are sampled uniformly at
random from E, then the expected number of samples to be taken before some element is
sampled twice is less than

√
πn/2 = Θ(

√
n). The element that is sampled twice is called a

collision . See [11] for the details.

Expected number of collisions. Let f : E → F be a random function. We are interested in the
expected number of collisions of f , i.e. the number of distinct pairs {x, y} with f (x) = f (y). For
instance, if k elements have the same value, this counts as

(k
2
)

collisions.

Fact 1 Let f : E → F be a random function, with |E| = n and |F| = m. The expected number of f
collisions is Θ

(
n2

2m

)
.

Proof. For each pair {x, y} (x , y), we define the following indicator random variable:

I{x,y} =

{
1 if f (x) = f (y)
0 otherwise
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Let C denote the number of collisions of f . The expectation E(C) of C is given by:

E(C) =
∑

{x,y}∈E×E,x,y

E(I{x,y}) =
1
m

∑
{x,y}∈E×E,x,y

1 =
1
m

(
n
2

)
= Θ

(
n2

2m

)
ut

Collision-finding algorithms Let f : E → F, with F ⊆ E, be a random function. According to
the birthday paradox, a collision of f can be found in roughly Θ(

√
|F|) evaluations. Common

search algorithms, e.g. Brent’s cycle-finding algorithm [4], achieve this by computing a chain of
invocations of f from a random starting point s until a collision occurs. In the text, the notation
(x, y) ←− Rho( f , s) refers to the collision (x, y) returned by f from starting point s, using a
cycle-finding algorithm.

In [22], van Oorschot and Wiener extend this idea to search collisions between two functions
f1 and f2 (both have the same domain E and range F, with F ⊆ E). The construction defines a
new function f that alternates between f1 and f2 depending on the input. The new function
f is a random function, thus any cycle-finding algorithm applies and finds a collision for the
new function in Θ(

√
|F|) and polynomial memory. The found collision is a collision between

f1 and f2 with probability 1
2 . Therefore the running time will roughly double if collisions are

random. This is achieved by randomizing the output of the algorithm. In fact, Brent’s cycle-
finding algorithm is likely to produce always the same collision. To remediate this problem,
[1,10] consider a family of permutations (Pk)k∈N in E addressed by k: they apply the collision-
finding algorithm to g : E→ E with g(x) = Pk( f (x)), where Pk is a random permutation from the
considered family. I.e., a new permutation is used with each invocation of the collision-finding
algorithm, which ensures that the produced collisions are uniformly distributed.

3 First Algorithm

Let P be a d-degree polynomial over F2 with nonzero constant term, and n > d be an integer.
Our goal is to compute a multiple of P with the least possible weight, and with nonzero constant
term and degree at most n. We proceed as follows.

We first determine the minimal weight using Inequality 1. Let ω be the found weight, and
1 + z = 1 +

∑n
i=1 ziXi be a weight-ω solution to the LWPM problem. We decompose z to z = x + y,

with x, y ∈ (Fn
2 ,+) and weight(x) = weight(y) = φ = n∗φn, whereφ is a weight to be determined

as a function of ω. Then, we compute x and y as a collision to a random function f , using any
collision-finding algorithm, e.g. [4].
To compute φ, we assume and put in place a Bernoulli distribution on x and y. That is, we
ensure the coordinates (of x and y) are independent and equal to 1 with the constant probability
φn = φ/n.

This section is organized as follows. Subsection 3.1 defines the building blocks that will
be used in the algorithm, namely the weight φ, the random function f and a further function
that puts in place the Bernoulli distribution. Subsection 3.2 describes our first algorithm for
solving LWPM. Finally Subsections 3.3 and 3.4 are dedicated respectively to the analysis and
experimental validation of the presented algorithm.

3.1 Building blocks

Computation of φ. Assume a Bernoulli distribution on x and y. I.e. the coordinates of both x
and y are considered independent trials with the constant probability of success Pr(xi = 1) =

Pr(yi = 1) = φn =
φ
n for i ∈ [1,n].
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Therefore z = x + y follows also a Bernoulli law with PMF Pr(zi = 1) = 2φn(1 − φn), for
i ∈ [1,n]. Moreover weight(z) ∼ Binomial(2φn(1 − φn),n). Since weight(z) = ω − 1, thus ω − 1 =
2nφn(1 − φn), which is equivalent to φn = 1

2 (1 ±
√

1 − 2ωn), where ωn := ω−1
n . Note that we

assumed ω ≤ n
2 , thus ωn ≤

1
2 .

Random function f . Let φ and φn be the quantities computed in the previous paragraph. Define
the set T :

T =
{
x ∈ {0, 1}n : weight(x) = φ = n ∗ φn

}
(2)

Let further ai = Xi mod P for i ∈ [0,n]. Consider the functions f0, f1:

f0, f1 : T −→ Fd
2

f0(x) =

n∑
i=1

xiai and f1(x) = a0 +

n∑
i=1

xiai
(3)

Define further the function f :

f : T −→ Fd
2

x 7−→
{

f0(x) if h(x) = 0
f1(x) if h(x) = 1

(4)

where h : {0, 1}n → {0, 1} is a random bit function. In other terms, f alternates between appli-
cations of f0 and f1 depending on the input. It is clear that a collision (x, y) of the function
f will lead to a multiple of P with expected weight less than ω. In fact, a collision of type
fi(x) = fi(y), i = 0, 1 gives a multiple with expected weight ω − 1, and a collision of type
fi(x) = f1−i(y), i = 0, 1 gives a multiple with expected weight ω.

Finally, since we will use a cycle-finding algorithm to search collisions of f , we need the
function range and domain to be the same. To achieve this, we consider an injective map
τ : Fd

2 −→ T (provided 2d
≤ |T |). Therefore, all collisions (x, y) of f satisfy

f (x) = f (y) ⇐⇒ τ ◦ f (x) = τ ◦ f (y)

In this way, any cycle-finding technique can be applied to τ ◦ f to search for collisions of f .
In the rest of the text, we conveniently identify τ ◦ f with f ; that is we assume that f outputs
elements in T , provided that 2d

≤ |T |, but we keep in mind that | f (T )| = 2d.

Bernoulli distribution on the input of f . Recall that function f inputs vectors of T that follow a
Bernoulli distribution with parameters φn and n. That is, coordinates of the input vectors are
independent and identically distributed with the constant probability φn of being equal to one.
With this assumption, a collision of f leads to a multiple of P with expected weight less than ω.
We achieve such a distribution by using a random function σ

σ : {0, 1}n −→ {0, 1}n

x 7−→ σ(x) : σ(x) ∼ Bernoulli(φn,n)

More precisely, σ uses the input elements as a seed to produce n-bit vectors that satisfy the
Bernoulli distribution. Therefore, the input elements are only used to “remember” the state of
the function, so that when it is called with the same value, it produces the same output.
Note that σ outputs elements with weight φ with non-negligible probability:
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Pr[σ(x) ∈ T , x ∈R {0, 1}n] =

(
n
φ

)
φ
φ
n (1 − φn)n−φ =

(
n

nφn

)
2−nH(φn)

≈
1√

2πnφn(1 − φn)

On other note, σ induces a uniform distribution on T . In fact, let y ∈ T be a given element in
T , and x a random input element to σ

Pr[σ(x) = y | σ(x) ∈ T ] =
Pr[σ(x) = y, σ(x) ∈ T ]

Pr[σ(x) ∈ T ]
=

φ
φ
n (1 − φn)n−φ(n

φ

)
φ
φ
n (1 − φn)n−φ

=
1
|T |

Therefore, we conveniently assume in the rest of this section that σ has range T on which
it induces a uniform probability distribution.

3.2 The algorithm

Consider the following map:

g : {0, 1}n −→ T (⊂ {0, 1}n)
x 7−→ f ◦ σ(x)

g is well defined as we assumed that σ has range T . Moreover, g is a random function from
{0, 1}n to {0, 1}n, and thus we can apply any cycle-finding algorithm to search collisions for g.
Note that σwill introduce some unnecessary collisions as we are only interested in collisions of
f . We explain later how we compute this fraction of “useful” collisions among the total number
of g collisions.

Now therefore, in consideration of the foregoing, a cycle-finding algorithm for g picks a
random starting point s ∈R {0, 1}n, then computes a chain of invocations of g, i.e. g(s), g2(s) :=
g◦ g(s), . . . until finding a repetition. If such a repetition leads to a valid collision (x, y), i.e. g(x) =
g(y) and x , y, return it otherwise start again with a new starting point. Termination of the
algorithm is guaranteed if the execution paths from different starting points are independent.
In other words, a random collision should be returned for each new starting point.

To randomize collisions, we introduce our last ingredient, a family of permutations Pk
addressed by integer k:

Pk : {0, 1}n −→ {0, 1}n

The new function subject to collision search is

g[k] = g ◦ Pk : T −→ T

Note that the restriction of Pk to T is still a permutation from T to Pk(T )(⊂ {0, 1}n).
g[k] is a random function, with domain and range T , which satisfies the randomness re-

quirement on the computed collisions. In fact, for each new starting point s, a freshly random
element Pk(s) is obtained thanks to Pk (the permutation Pk is picked new with each new starting
point), which is then used as a seed to σ to produce a random n-bit vector in T (with non-
negligible probability) that satisfies the Bernoulli distribution. Therefore, execution paths, in
cycle-searching algorithms for g[k], from different starting points are independent.
Moreover, (x, y) is a collision for g[k] if and only if (Pk(x),Pk(y)) is a collision for g. Therefore, we
can apply any cycle-finding algorithm to g[k] to search collisions for g.

We can now describe Algorithm 1 for solving the LWPM problem.
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Algorithm 1 for LWPM
Input A polynomial P with degree d, and a bound n
Output A multiple M of P such that deg(M) ≤ n and with the least possible weight.
Compute the expected minimal weight ω by solving Inequality 1
ωn ←− (ω − 1)/n ; µ←− ω − 1
repeat

µn ←− µ/n; µ←− µ + 1
φn ←−

1
2 (1 ±

√
1 − 2 ∗ µn) ; φ←− n ∗ φn

until
(n
φ

)
≥ 2d . to ensure that f has range f (T ) ⊆ T

repeat
choose a random permutation Pk

choose a random starting point s ∈R T

(x, y)←− Rho(g[k], s)
(p, q)←− (σ ◦ Pk(x), σ ◦ Pk(y))

M←−
{

X ∗ (p + q) if fi(p) = fi(q), i = 0, 1
1 + X ∗ (p + q) if fi(p) = f1−i(q), i = 0, 1

until M ≡ 0 mod P and weight(M) ∈ [1, ω]
return M

Remark 1. Algorithm 1 finds weight-ω multiples provided they exist. When Inequality 1 pre-
dicts a weight that does not exist, the algorithm runs indefinitely. As a safety valve, one can
allow a margin in the breaking condition, and accept multiples with weights within that margin.

Remark 2. The µn’s considered in the first loop are all less than 1
2 . In fact, they satisfy µn =

2φn(1 − φn), and the function x 7−→ 2x(1 − x) is upper bounded by 1
2 for x ∈ [0, 1].

Remark 3. Both the values 1
2 (1 +

√
1 − 2µn) and 1

2 (1 −
√

1 − 2µn) for φn give the same expected
time in terms of function calls, however, the latter value finds the solution faster as it is easier
to manipulate sparse vectors.

3.3 Complexity analysis

Theorem 1. Algorithm 1 runs in time Θ(2Ct) with

Ct =
d
2

+ n(−H(wn) + H1(ωn)) +
3
2

log2(2πnωn(1 − ωn))

where H1(ωn) = −ωn log2(2ωn(1 − ωn)) − (1 − ωn) log2(1 − 2ωn(1 − ωn)).

We first note that ω − 1 = φ. In fact, ω is the smallest integer such that the inequality( n
ω−1

)
≥ 2d holds. On other note, φ is the smallest integer such that

(n
φ

)
≥ 2d, thus φ = ω − 1 and

φn = ωn.
Moreover, g and thus g[k] induces the uniform distribution on g[k](T ). In fact, σ induces

the uniform distribution on T , and f alternates with probability 1
2 between applications of the

deterministic functions f0 and f1. Thus, the birthday paradox applies and a collision of g[k] costs
on average 2d/2. Actually, g[k] has domain T and range g[k](T ) ⊆ T, with |g[k](T )| = 2d. Also,
the expected number of g[k] collisions is Θ( |T |

2

2d+1 ) according to Fact 1.

Proof. The algorithm searches collisions (x, y) for g[k] that correspond to f collisions, and that
satisfy a weight condition. We call such collisions “useful collisions”. Let (x, y) ∈R T

2 with
(p, q) = (σ ◦ Pk(x), σ ◦ Pk(y)). (x, y) is a useful collision for g[k] if the following hold:

Event E1: “p, q ∈ T ” (so that the function g and thus g[k] is well-defined)

9



Event E2: “weight(p + q) = n ∗ ωn”
Event E3: “X ∗ (p + q) or 1 + X ∗ (p + q) is a multiple of P”

Therefore the number of useful collisions is given by |T |2 ∗ Pr[E1 ∧ E2 ∧ E3].
According to the previous study of σ, we have Pr[E1] ≈ 1

2πnφn(1−φn) .
Moreover, p ∼ Bernoulli(φn,n) and q ∼ Bernoulli(φn,n). Therefore

p + q ∼ Bernoulli(2φn(1 − φn),n), and weight(p + q) ∼ Binomial(2φn(1 − φn),n). Thus:

Pr[E2 | E1] ≈ Pr[E2] =

(
n

n ∗ ωn

)
(2φn(1 − φn))n∗ωn(1 − 2φn(1 − φn))n−n∗ωn

=

(
n

ω − 1

)
(2φn(1 − φn))n∗ωn(1 − 2φn(1 − φn))n−n∗ωn

Finally, the probability that a random weight-ω polynomial with nonzero constant term
and degree at most n equals a weight-ω multiple of P with nonzero constant term and degree
at most n is

( n
ω−1

)−1
NM, whereNM is the number of such multiples which equals

( n
ω−1

)
2−d.

Similarly, the probability that a random weight-(ω−1) polynomial with zero constant term and
degree at most n equals a weigh-(ω − 1) multiple of P with zero constant term and degree at
most n is

( n
ω−1

)−1
N
′
M, whereN ′M is the number of such multiples which equals

( n
ω−1

)
2−d. Thus

Pr[E3 | E2,E1] = 2−d+1.
Since φn = ωn (φ = ω − 1), we conclude that the number of useful collisions is given by

Nuseful−collisions = |T |2 ∗ Pr[E1 ∧ E2 ∧ E3]

≈ |T |
22−d+1

(
n

ω − 1

)
(2φn(1 − φn))n∗ωn(1 − 2φn(1 − φn))n−n∗ωn

1
2πnφn(1 − φn)

= |T |32−d+1(2ωn(1 − ωn))n∗ωn(1 − 2ωn(1 − ωn))n−n∗ωn
1

2πnωn(1 − ωn)

And the probability of a useful collision is:

Pr[useful − coll] =
Nuseful−collisions

Ngk−collisions

≈ Θ

(
2−2
|T |(2ωn(1 − ωn))n∗ωn(1 − 2ωn(1 − ωn))n−n∗ωn

1
2πnωn(1 − ωn)

)
= Θ

(
2nH(ωn)(2ωn(1 − ωn))n∗ωn(1 − 2ωn(1 − ωn))n−n∗ωn

1
(2πnωn(1 − ωn))3/2

)
Finally, the running time (in terms of function calls) of the algorithm is the product of

Pr[useful − coll]−1 and the cost of a g[k]-collision, i.e. 2d/2. Thus, on average, the running time
exponent is approximately:

Ct =
d
2

+ n(−H(wn) + H1(ωn)) +
3
2

log2(2πnωn(1 − ωn)

where H1(ωn) = −ωn log2(2ωn(1 − ωn)) − (1 − ωn) log2(1 − 2ωn(1 − ωn)).
ut

3.4 Experimental results
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Fig. 3. Averaged function calls T
for Algorithm 1 run on Polyno-
mial P

We run Algorithm 1 on the following polynomial P for n ∈
[30, 1100]. The results are depicted in Figure 3.

P = X19 + X11 + X10 + X8 + X7 + X5 + X4 + X3 + X2 + X1 + 1

Further experiments are deferred to Appendix A.
We used the the Θ̃ notation for the estimated time, which

explains the differences between the estimates and the experi-
ments; the polynomial factor (2πnωn(1 − ωn))

3
2 is ignored in the

estimated time.

4 Second Algorithm

Algorithm 1 in Section 3 incurs an overhead in the computations
due to function σ. Actually, with each invocation of the function
f , we make a call to σ which uses a pseudo-random number
generator to establish the Bernoulli distribution on the input.

We remediate this problem in this section. Therefore, we de-
compose the solution z of LWPM into a pair (x, y), where x, y are n-bit vectors that do not enjoy
any specific properties except having the same weight φ to be determined. We then look for
such pairs by searching collisions of f .

Consider the set T defined in Statement 2, and let x, y ∈R T . We proceed as follows. We
first determine the PMF of the random variable Y = weight(x + y) and compute φ as a function
of ω. Then, we describe, analyze and experimentally validate our second algorithm in the
subsequent subsections.

4.1 Computation of φ

Probability law of Y = weight(x + y)

Fact 2 Pr[Y = 2k + 1] = 0, ∀k ∈N.

Proof. Pr[Y = 2k + 1] denotes the probability that x and y disagree on exactly 2k + 1 positions.
Let x̄ and ȳ be the (2k + 1)-bit strings extracted from x and y respectively, and composed of the
bits where x and y disagree. Let further x\x̄ and y\ȳ be the remaining strings of x and y after
extraction of x̄ and ȳ respectively. We have x̄i = 1− ȳi, for i ∈ [1,n]. That is, there are 2k + 1 ones
distributed between the bits of x̄ and ȳ.
Since weight(x) = weight(y) = φ. Then, we will have 2φ − 2k − 1 ones distributed equally
between the bits of x\x̄ and y\ȳ since x\x̄ = y\ȳ. This is impossible as 2φ − 2k − 1 is odd. We
conclude that x and y cannot disagree on an odd number of positions. ut

Fact 3 Pr[Y = k] = 0, for k < [0,min(2φ,n)].

Proof. There is a total of 2φ ones in both x and y. Therefore, x and y can disagree on at most 2φ
positions. That is Pr[Y > 2φ] = 0. On other note, it is obvious that Pr[Y > n] = Pr[Y < 0] = 0. ut

Let now, k ≤ min(φ,n/2) be an integer. Pr[Y = 2k] is given by the number of strings x and y
that disagree on 2k positions, divided by the size of the probability space. The number of such
strings is given by the product of:

–
( n
2k
)
: the number of ways to choose the positions where x and y disagree.

11



–
(2k

k
)
: the number of ways to distribute k ones in those 2k positions. In fact, let x̄ and ȳ be the

(2k)-bit strings extracted from x and y respectively, and composed of the bits where x and y
disagree. Then, x̄ and ȳ have the same weight, namely k, as x and y have the same weight φ,
and agree on the remaining n − 2k positions. Thus, the 2k ones must be equally distributed
among x̄ and ȳ.

–
(n−2k
φ−k

)
: the number of ways to choose (n− 2k)-bit strings with weight (φ− k). I.e. the number

of sub-strings where x and y agree.

The size of the probability space is given by |T |2 =
(n
φ

)2. Thus

Pr[Y = 2k, k ≤ min(φ,n/2)] =

(
n
2k

)(
2k
k

)(
n − 2k
φ − k

)/(
n
φ

)2

=

(
φ

k

)(
n − φ

k

)/(
n
φ

)
We conclude that:

Pr[weight(x + y) = 2k] =

(φ
k
)(n−φ

k
)/(n

φ

)
if 0 ≤ k ≤ min(φ,n/2)

0 otherwise

Computation of φ Note that the PMF of Y = weight(x + y) is reminiscent of the hypergeometric
distribution G given by PMF:

Pr[G = k] =

(t
k
)(n−t
φ−k

)/(n
φ

)
if 0 ≤ t, φ ≤ n and 0 ≤ k ≤ min(φ, t)

0 otherwise

and expectation E(G) = φ2/n. Actually, for t = φ, we get

Pr[G = k] =


(φ

k
)(n−φ
φ−k

)/(n
φ

)
if 0 ≤ φ ≤ n and 0 ≤ k ≤ φ

0 otherwise

Therefore Pr[weight(x + y) = 2k] = Pr[G = φ − k]. We derive the expectation of Y =
weight(x + y) as follows.

E(Y) =

2φ∑
k=0,k=2p

k Pr[Y = k] =

φ∑
k=0

2k Pr[Y = 2k]

=

φ∑
k=0

2k Pr[G = φ − k] = 2
φ∑

k=0

(φ − k) Pr[G = k]

= 2φ − 2E(G) = 2φ(1 − φ/n)

Therefore, if we conserve our previous notations: φ = n ∗ φn, and ω − 1 = ωn ∗ n, and solve
for φn the equationωn ∗n = 2φ(1−φ/n). We get φn = 1

2 (1±
√

1 − 2ωn) (ωn ≤
1
2 ). Note that we get

the same value we found for φ in Section 3, when we assumed a Bernoulli distribution on x and
y, and consequently a binomial distribution on weight(x + y) (x + y ∼ Bernoulli(φn(1 − φn),n)
and thus weight(x + y) ∼ Binomial(2φn(1 − φn),n)). This is not surprising; we know that for
increasing n, the hypergeometric law converges to the binomial law.
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4.2 The algorithm

Let (P, d,n) be a LWPM instance. We compute the minimal weight ω as usual by solving
Inequality 1, then we compute φn as 1

2 (1 ±
√

1 − 2(ω − 1)/n) and φ as nφn.
To compute a weight-ωmultiple of P with degree less than n, we similarly search for collisions
(p, q) of the function f defined earlier, where p and q are n-bit vectors with weight φ. There is a
small particularity of this algorithm depending on the parity of ω. In fact, collisions of f are of
two types:

Type 1 collisions that correspond to fi(p) = f1−i(q), i = 0, 1. These collisions produce multiples
of type 1 + X(p + q), with weight 1 + 2k, 1 ≤ k ≤ min(φ,n/2).

Type 2 collisions that correspond to fi(x) = fi(y), i = 0, 1. These collisions produce multiples
of type X(p + q), with weight 2k, 1 ≤ k ≤ min(φ,n/2)

Therefore, if ω = 1 + 2k, we set µ =: ω − 1 and φ = nφn, with φn = 1
2 (1 ±

√
1 − 2µ/n). As in

Algorithm 1, we ensure that f outputs values in T (using the injective map τ : Fd
2 −→ T ) by

satisfying the condition |T | ≥ 2d, where |T | =
(n
φ

)
: we keep increasing µ until the inequality

holds. Similarly, if ω = 2k, then we initially set µ := ω and keep increasing it until
(n
φ

)
≥ 2d,

where φ = nφn and φn = 1
2 (1 ±

√
1 − 2µ/n). We note again that both 1

2 (1 +
√

1 − 2µ/n) and
1
2 (1 −

√
1 − 2µ/n) lead to the same expected function calls, however, the latter value finds the

solution faster as it is easier to manipulate sparse vectors.
Finally, to randomize collisions, it is enough to use any family of permutations Pk : T −→ T .

The collision-finding algorithm is then applied to f [k] := Pk ◦ f .
We are now ready to give the pseudo-code description of our second algorithm for LWPM

in Algorithm 2.

Algorithm 2 for LWPM
Input A polynomial P with degree d, and a bound n
Output A multiple M of P such that deg(M) ≤ n and with the least possible weight.
Compute the expected minimal weight ω by solving Inequality 1
if ω%2 = 1 then

ωn ←− (ω − 1)/n ; µ←− ω − 1
else

ωn ←− ω/n ; µ←− ω
end if
repeat

µn ←− µ/n ; µ←− µ + 1
φn ←−

1
2 (1 ±

√
1 − 2 ∗ µn) ; φ←− n ∗ φn

until
(n
φ

)
≥ 2d . to ensure that f has range f (T ) ⊆ T

repeat
choose a random permutation Pk : T −→ T
choose a random starting point s ∈R T

(p, q)←− Rho( f [k], s)

M←−
{

X ∗ (p + q) if fi(p) = fi(q), i = 0, 1
1 + X ∗ (p + q) if fi(p) = f1−i(q), i = 0, 1

until M ≡ 0 mod P and weight(M) ∈ [1, ω]
return M

First, we note that Remarks 1 & 2 & 3 for Algorithm 1 apply also here. Moreover, for even
ω, Algorithm 2 finds multiples of the form X ∗ (p + q), where p + q is a polynomial with degree
at most n− 1. That is, the algorithm finds a weight-ωmultiple with nonzero constant term and
degree at most n − 1 (since P has nonzero constant term) provided it exists. One could change,
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in this case, the definition of T and f and manipulate (n + 1)-bit vectors instead of n-bit vectors
in order to find multiples of degree at most n, but we opted for the above description to keep
the algorithm simple.

4.3 Complexity analysis

Let p, q ∈R T and j, ω ∈ [1,n]. Define the following events:

Event W: ”weight(p + q) = ω”
Event P j: ”(p + q)1... j = 0 . . . 0︸︷︷︸

j-1

1”, where (x)1... j denotes the length- j prefix of vector x.

Actually, when ω is even, then Algorithm 2 computes the solution as a Type 2 collision
(p, q), i.e. produces multiples of the form X(p+q). As we are interested in multiples with nonzero
constant term, we need to measure the probability of the event W ∧ P j. Thus the necessity of
the following fact.

Fact 4 Letω be an even weight in [1,n]. Then Pr[W∧P j] =
ω

n − j + 1
Pr[W]

j−2∏
l=0

(
1 −

ω
n − l

)
. Moreover,

for small ω and i, with j ≤ i ≤ n:
i∑

j=1

Pr[W ∧ P j] ≥ i Pr[W]
ω

n − i + 1

( n
n − i + 1

)ω
.

Proof. Let P j denote the event ”(p + q)1... j = 0 . . . 0”. We prove by induction that

Pr[W ∧ P j] = Pr[W]
j−1∏
l=0

(
1 −

ω
n − l

)
.

For j = 1:

Pr[W ∧ (p + q)1 = 0] = Pr[p1 = q1 = 0] Pr[W | p1 = q1 = 0] + Pr[p1 = q1 = 1] Pr[W | p1 = q1 = 1]

=


(n−1
φ

)(n
φ

) 
2

Pr[W | p1 = q1 = 0] +


(n−1
φ−1

)(n
φ

) 
2

Pr[W | p1 = q1 = 1]

= (1 − φn)2 Pr[weight(p′ + q′) = ω] + φn
2 Pr[weight(p” + q”) = ω]

Where, p′, q′ are random (n − 1)-bit vectors with weight(p′) = weight(p′) = φ, and p”, q” are
random (n−1)-bit vectors with weight(p”) = weight(p”) = φ−1. Using the PMF of weight(p+q),
we compute Pr[weight(p′ + q′) = ω] and Pr[weight(p” + q”) = ω], and find that the expression
of Pr[W ∧ (p + q)1 = 0] simplifies to Pr[W]

(
1 − ω

n

)
.

Let now j ≥ 1, and suppose the result holds true until j. We have

Pr[W ∧ P j+1] = Pr[W ∧ P j ∧ (p + q) j+1 = 0]

The event ”W∧P j” is equivalent to the event W′ : weight(p′+q′) = ω”, where p′, q′ are (n− j)-bit
vectors such that weight(p′) = weight(q′) = φ j with φ j taking values in the interval [φ − j, φ].
Therefore:

Pr[W ∧ P j+1] = Pr[W′ ∧ (p′ + q′)1 = 0]

=

(
1 −

ω
n − j

)
Pr[W′] =

(
1 −

ω
n − j

)
Pr[W ∧ P j]

= Pr[W]
j∏

l=0

(
1 −

ω
n − l

)
14



Since Pr[W ∧ P j] = Pr[W ∧ P j−1] − Pr[W ∧ P j], then Pr[W ∧ P j] = ω
n− j+1 Pr[W]

∏ j−2
l=0

(
1 − ω

n−l

)
.

On the other hand, for small ω and i such that j ≤ i ≤ n, we have

log2

 i∑
j=1

Pr[W ∧ P j]

 = log2

 i∑
j=1

ω
n − j + 1

Pr[W]
j−2∏
l=0

(
1 −

ω
n − l

)
≥ log2

i Pr[W]
ω

n − i + 1

i−2∏
l=0

(
1 −

ω
n − l

)
= log2

(
i Pr[W]

ω
n − i + 1

)
+

i−2∑
l=0

log2

(
1 −

ω
n − l

)
≈ log2

(
i Pr[W]

ω
n − i + 1

)
+

i−2∑
l=0

ω
n − l

≈ log2

(
i Pr[W]

ω
n − i + 1

)
+ ω

(
log2(n) − log2(n − i + 1)

)
The last equation is due to the approximation of the harmonic series

∑n
k=1

1
k ≈ ln(n).

Finally:
∑i

j=1 Pr[W ∧ P j] ≥ i Pr[W] ω
n−i+1

(
n

n−i+1

)ω
.

Theorem 2. Algorithm 2 runs in time Θ̃(2Ct) where Ct = d
2 + n (−H2(ωn) + H(ωn)), with

H2(ωn) = ωn + (1 − ωn)H
(

ωn
2(1−ωn)

)
.

Proof. The algorithm searches for two types of f -collisions: Type 1 collisions when ω is odd,
and Type 2 collisions when ω is even. We detail below the cost of each collision.

Type 1 collisions. A Type 1 collision (p, q) satisfies for an odd ω (i) weight(p + q) = ω − 1 and
(ii) 1 + X ∗ (p + q) is a weight-ω multiple of P.
Define the following events for a pair (p, q) ∈R T

2: W : ”weight(p + q) = ω − 1” and
M : ” f | 1 + X ∗ (p + q)”.
According to the probability law of weight(p + q), we have

Pr[W] =

(
φ

(ω − 1)/2

)(
n − φ

(ω − 1)/2

)/(n
φ

)
=

(
ω − 1

(ω − 1)/2

)(
n − ω + 1
(ω − 1)/2

)/( n
ω − 1

)
≈ 2n

(
ωn+(1−ωn)H

(
ωn

2(1−ωn)

)
−H(ωn)

) 4(1 − ωn)√
2πnωn(2 − 3ωn)

In fact φ = ω − 1 (and thus φn = ωn) since φ and ω − 1 are the smallest integers that satisfy the
inequality

(n
x
)
≥ 2d.

Further, and as argued previously, the probability that a random weight-ω polynomial with
nonzero constant term and degree at most n equals a weight-ω multiple of P with nonzero
constant term and degree at most n is

( n
ω−1

)−1
NM, where NM is the number of such multiples

which equals
( n
ω−1

)
2−d.

Therefore, for a pair (p, q) ∈R T
2 and an odd ω

Pr[(p, q) is a Type 1 collision] = Pr[W ∧M] = Pr[W] Pr[M |W] = 2−d Pr[W]

This implies that we have heuristically NType1−collisions = |T |22−d Pr[W] many Type 1 collisions.
The probability ptype1−collisions of finding such collisions is given by the ratio of NType1−collisions
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and the total number of f collisions, estimated by |T |22−d−1,

ptype1−collisions =
|T |

22−d Pr[W]
|T |22−d−1

≈ Θ

2n
(
ωn+(1−ωn)H

(
ωn

2(1−ωn)

)
−H(ωn)

) 8(1 − ωn)√
2πnωn(2 − 3ωn)


Each collision costs Θ(2d/2), therefore, the expected number of function calls before the algo-
rithm terminates is Θ(2CtPoly1(n)):

Ct =
d
2

+ n
(
−ωn − (1 − ωn)H

(
ωn

2(1 − ωn)

)
+ H(ωn)

)
and Poly1(n) =

√
2πnωn(2 − 3ωn)

8(1 − ωn)

Type 2 collisions. Whenω is even, the algorithm produces a Type 2 collision (p, q), characterized
by: (i)weight(p + q) = ω, (ii) (p + q)1... j = 0 . . . 01, where 1 ≤ j ≤ i and i is the largest integer such
that there exists a weight-ωmultiple of P with nonzero constant term and degree n− i, and (iii)
X(p + q) is a weight-ω multiple of P of degree at most n − 1.
For a pair (p, q) ∈R T

2, consider the events W and P j defined earlier in this subsection, in
addition to the event M : ” f | X ∗ (p + q)”. Therefore

Pr[(p, q) is a Type 2 collision] =

i∑
j=1

Pr[W ∧ P j ∧M] =

i∑
j=1

Pr[W ∧ P j] Pr[M |W,P j]

Again, the probability that a random weight-ω polynomial with nonzero constant term and
degree n − i equals a weight-ω multiple of P with nonzero constant term and degree n − i

is
( n−i
ω−1

)−1
N
′
M, where N ′M is the number of such multiples which equals

( n−i
ω−1

)
2−d. Therefore

Pr[M |W,P j] = 2−d for j ∈ [1, i]. Furthermore, according to Fact 4, we have:

Pr[(p, q) is a Type 2 collision] = 2−d
i∑

j=1

Pr[W ∧ P j] ≥ 2−di Pr[W]
ω

n − i + 1

( n
n − i + 1

)ω
With

Pr[W] =

(
φ

ω/2

)(
n − φ
ω/2

)/(n
φ

)
=

(
ω − 1
ω/2

)(
n − ω + 1
ω/2

)/( n
ω − 1

)
Using

(n−1
k
)

= n−k
n

(n
k
)

and
( n
k−1

)
=

(n
k
) k

n−k+1 , we get:

Pr[W] ≈
(n − ω + 1)2

ω(2n − 3ω + 2)
· 2n

(
ωn+(1−ωn)H

(
ωn

2(1−ωn)

)
−H(ωn)

)
·

4(1 − ωn)√
2πnωn(2 − 3ωn)

By proceeding in the same way as for Type 1 collisions, we show that Algorithm 2 produces
Type 2 collisions in Θ(2CtPoly2(n)):

Ct =
d
2

+ n (−H2(ωn) + H(ωn)) with H2(ωn) = ωn + (1 − ωn)H
(

ωn

2(1 − ωn)

)
and

Poly2(n) =
(2n − 3ω + 2)
(n − ω + 1)2 ·

√
2πnωn(2 − 3ωn)

8(1 − ωn)
n − i + 1

i

(n − i + 1
n

)ω
Note that

(
n−i+1

n

)ω
≤ 1, thus Poly2(n) is indeed polynomial in n. ut
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4.4 Experimental results
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Fig. 4. Averaged function calls T
for Algorithm 2

We consider the same test polynomial in Subsection 3.4 for the
same range of values n ∈ [30, 1100]; the results are depicted in
Figure 4. Note that we used the Θ̃notation for the estimated time,
which explains the slight differences between the estimates and
the experiments. Further experiments are given in Appendix A.

5 Comparison with the State-of-the-art

In this section, we compare the performance of our algorithms
with existing memory-efficient methods for LWPM (discrete-log
and birthday methods). These lasts run in Θ̃(2d) and Θ̃(2nH(ωn))
respectively. Actually, we discard the lattice method as it be-
comes inaccurate with increasing n (few hundreds).

Method Exhaustive search Discrete Log [19] Birthday [6] Algorithm 1 Algorithm 2
log2(Θ̃(T)) min(n − d,nH(ωn)) d nH(ωn) d

2 + n(−H(wn) + H1(ωn)) d
2 + n (−H2(ωn) + H(ωn))

Table 1. Comparison between the memory-efficient techniques and our algorithms
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Fig. 5. Comparison between the
memory-efficient techniques and
our algorithms

Figure 5 depicts the performance of our algorithms in com-
parison with the state-of-the-art methods. Note that our al-
gorithms apply to any polynomial, and do not use any pre-
computed tables of discrete logarithms, unlike some existing
memory-efficient methods (discrete-log-based ones).

Cryptanalytic application I: the Bluetooth summation generator poly-
nomial The Bluetooth polynomial is the product of the four con-
stituent LFSRs feedback polynomials; PBT = P1 ·P2 ·P3 ·P4 where:

P1(x) = x25 + x20 + x12 + x8 + 1; P2(x) = x31 + x24 + x16 + x12 + 1;

P3(x) = x33 + x28 + x24 + x4 + 1; P4(x) = x39 + x36 + x28 + x4 + 1;

PBT has degree 128 and weight 49; at degree n = 668, the
authors in [14] found a multiple of weight ω = 31. Note that the
maximum keystream length for the Bluetooth combiner is 2745. That is, the maximum value
for the multiple degree is 2745. We note in Table 2 the performances of the different polynomial
memory algorithms on this instance.
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Method Exhaustive search Discrete Log [19] Birthday method [6] Algorithm 1 Algorithm 2
log2(Θ̃(T)) 181 128 177 76 108

Table 2. Time-complexities of the memory-efficient techniques and our algorithms on the Bluetooth polynomial

Cryptanalytic application II [8] We consider the test polynomial used in [8]

P53 = X53 + X47 + X45 + X44 + X42 + X40 + X39 + X38 + X36 + X33 + X32 + X31 + X30 + X28 + X27

+ X26 + X25 + X21 + X20 + X17 + X16 + X15 + X13 + X11 + X10 + X7 + X6 + X3 + X2 + X1 + 1.

The authors in [8] found multiples of weight ω = 5 at degree n = 213. We note in Table 3 the
performances of the different polynomial memory algorithms on this instance.

At degree n ≥ 220, the authors found multiples with weight ω = 4. However, at this
degree, the condition n ≥ 2d/(1+log2(ω−1)) is satisfied; thus, the generalized birthday method [24]
outperforms with a time and a memory cost polynomial in n.

Method Exhaustive search Discrete Log [19] Birthday method [6] Algorithm 1 Algorithm 2
log2(Θ̃(T)) 61 53 50 28 45

Table 3. Time-complexities of the memory-efficient techniques and our algorithms on the [8] instance

6 Time-Memory Trade-off Variants

Our previously described algorithms allow fortunately for a time-memory trade-off, thanks to
van Oorschot-Wiener’s Parallel Collision Search (PCS) technique [22]. This technique has been
extensively used in cryptanalysis since its introduction; it allows to efficiently find multiple
collisions, of a random function, at a low amortized cost per collision. More precisely, let C be
the time complexity to find a collision with polynomial memory, then PCS finds 2m collisions
in time Θ̃(2

m
2 C) using Θ̃(2m) memory.

In the following, we apply PCS to Algorithms 1 & 2 in order to decrease their time complexity
at the expense of memory.

Algorithm 1 Trade-off. According to the analysis in Section 3, Algorithm 1 requires to find
Θ̃(2n(−H(wn)+H1(ωn))) collisions. In fact, this value corresponds to the number of examined col-
lisions before coming across a so-called useful collision, i.e. a collision that leads to a so-
lution to the LWPM problem. Each collision comes at the cost of Θ̃(2

d
2 ). Therefore, using

Mtmto-1 = Θ̃(2n(−H(wn)+H1(ωn))) memory, the time complexity of the trade-off variant of Algo-

rithm 1 reduces to Ttmto-1 = Θ̃(2
n(−H(ωn)+H1(ωn))

2 · 2
d
2 ).

Algorithm 2 Trade-off. Similarly, Algorithm 2 requires to find Θ̃(2n(H(ωn)−H2(ωn))) collisions, each at
the cost of Θ̃(2

d
2 ). Therefore, using Mtmto-2 = Θ̃(2n(H(ωn)−H2(ωn))) memory, the time complexity

of the trade-off variant of Algorithm 2 reduces to Ttmto-2 = Θ̃(2
n(H(ωn)−H2(ωn))

2 · 2
d
2 ).

We depict in Table 4 and Figure 6 the time/memory costs of the trade-off variants of Algo-
rithms 1 & 2 and of the state-of-the-art.
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DL [8] Syndrome Dec [13,16] Birthday [7] GBP 1[24] Algo1 Algo2
log2(T) nH(ω−2

2n ) ω(log2 n − log2 d) nH(ω−1
2n ) log2(n) 1

2 (d − n(H(ωn) + H1(ωn))) 1
2 (d + n(H(ωn) −H2(ωn)))

log2(M) nH(ω−2
2n ) ω log2 d nH(ω−1

4n ) log2(n) n(−H(ωn) + H1(ωn)) n(H(ωn) −H2(ωn))

Table 4. Comparison between the time-memory trade-off techniques and our algorithms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

δ
w
it
h
T

=
2n
δ

weight ωn

Algorithm 1
Algorithm 2

DL [8]
SD [13,16]

Birthday [7]

(a) Time complexity

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

δ
w
it
h
T

=
2n
δ

weight ωn

Algorithm 1
Algorithm 2

DL [8]
SD [13,16]

Birthday [7]

(b) Memory complexity

Fig. 6. Time/Memory costs of the state-of-the-art and our trade-off algorithms

Our trade-off variants outperform obviously the state-of-the-art in memory, however, they
loose the lead in the running time as the weights get smaller. Note however that when the
weights get very small, then the generalized birthday method [24] imposes itself as we will see
below in Cryptanalytic application II.

Cryptanalytic application I: The Bluetooth Polynomial We note in Table 5 the performances of the
time-memory tradeoff methods on the Bluetooth instance considered in Section 5. We discard
the generalized birthday method as the condition n ≥ d/(1 + log2(ω − 1)) is not satisfied.

DL [8] Syndrome Dec [13,16] Birthday [7] Algo1 Algo2
log2(T) 101 73 103 70 86
log2(M) 101 217 59 12 44

Table 5. Time/memory costs of the time-memory trade-off techniques on the Bluetooth polynomial

Cryptanalytic application II [8] We consider the instance polynomial P53 defined earlier in Section
5. We provide in Table 6 the performances of the time-memory tradeoff methods on this
polynomial at degree n = 213 and weight ω = 5.

1 provided n ≥ 2d/(1+log2(ω−1))
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It is clear that, despite requiring a big precomputation step and applying only to primitive
polynomials with smooth orders, the DL [8] method provides the best time/memory trade-off
on this instance. However, we remark that if go up to degree n = 220, we can get a 4-weight
multiple using Wagner’s generalized birthday, in time and memory polynomial in 220. This is
of course only possible when the available keystream allows it (since n is upper bounded by
the available keystream length).

DL [8] Syndrome Dec [13,16] Birthday [7] Algo1 Algo2
log2(T) 21 36 27 27 36
log2(M) 21 29 14 13 19

Table 6. Time/memory costs of the time-memory trade-off techniques on the [8] instance
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Fig. 7. Averaged function calls T for Algorithms 1 & 2 run on Polynomial:
P17 = X17 + X15 + X14 + X13 + X11 + X10 + X9 + X8 + X6 + X5 + X4 + X2 + 1
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Fig. 8. Averaged function calls T for Algorithms 1 & 2 run on Polynomial:
P24 = X24 + X21 + X19 + X18 + X17 + X16 + X15 + X14 + X13 + X10 + X9 + X5 + X4 + X1 + 1
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