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From congruent number to elliptic curve

 Congruent number: We say a positive square-free integer n is congruent 
number, if there is a right triangle whose area is n. 

 n is congruent number ⟺ 𝐸𝑛: 𝑦
2 = 𝑥3 − 𝑛2𝑥 has non-torsion point.

 Proposition: 𝐸𝑛: 𝑦
2 = 𝑥3 − 𝑛2𝑥 has non-torsion point P = x, y , y ≠ 0 ⟺

∃r, s, ∆∈ ℕ, s. t. n∆2= (𝑟 + 𝑠)(𝑟 − 𝑠)𝑟𝑠. We can see that 𝑟 + 𝑠, 𝑟 − 𝑠, 𝑟, 𝑠
may include factors of n.

 Proof:𝑦2 = 𝑥3 − 𝑛2𝑥 ⇔ 𝑛𝑦2 = 𝑛𝑥 𝑥 − 𝑛 𝑥 + 𝑛 ⇔ 𝑛 𝑚2𝑦 2 =
𝑛𝑚 𝑚𝑥 𝑚𝑥 +𝑚𝑛 𝑚𝑥 −𝑚𝑛 . Then let r = mx, s = mn.



From congruent number to elliptic curve

 It is natural to related a subproblem of integer factoring to the problem of 
computing the Mordell-Weil group of elliptic curve 𝐸𝑛. But there are two 
problems remaining.

 1.If n is not a congruent number, how do we combine the Integer 
Factorization with the elliptic curve?

 2. Is there an efficient way to find the point?

 Solution1: Relate a greater family of elliptic curve.

 Solution2: The current approach is decent method and Heegner point method.



Previous works

 In 2003, Burhanuddin and Huang considered the family of elliptic curves 
𝐸𝐷: 𝑦

2 = 𝑥3 − 𝐷𝑥 where 𝐷 = 𝑝𝑞 with 𝑝 and 𝑞 distinct prime integers, 𝑝 ≡

𝑞 ≡ 3 𝑚𝑜𝑑 16, and 
𝑝

𝑞
= 1. Furthermore they speculated that the problem of 

integer factorization and the problem of computing the rational points of the 
elliptic curve can be polynomial-time equivalent.

 For the 2-Selmer group. They compute that 𝑆 𝜙 = {1, 𝑝𝑞}, 𝑆′ 𝜙 =
1, 𝑝, −𝑞,−𝑝𝑞 . At that time Ran𝑘 𝐸𝐷 = 1, and the non-torsion points on 𝐸𝐷

can factor D.



Previous works

 In 2014 Li and Zeng studied a family of elliptic curve 𝐸2𝐷𝑟: 𝑦
2 = 𝑥3 − 2𝐷𝑟𝑥

where 𝐷 = 𝑝𝑞 with 𝑝 and 𝑞 distinct prime integers, 2𝐷𝑟 is square-free. They 
proved that there are infinitely many 𝑟 > 1 such that 𝐸2𝐷𝑟 has conjectural 
rank one and 𝑣𝑝(𝑥(𝑘𝑃)) ≠ 𝑣𝑞(𝑥(𝑘𝑃)) for any odd integer 𝑘, where 𝑃 is the 

generator of 𝐸2𝐷𝑟 . Furthermore, assuming the Generalized Riemann 
hypothesis holds, the minimal value of 𝑟 is in𝑂(𝑙𝑜𝑔4(𝐷)).

 For the 2-Selmer group. They compute that 𝑆 𝜙 = {1,2𝐷𝑟}, 𝑆′ 𝜙 =
1, 𝐴,−2𝐷𝑟/𝐴,−2𝐷𝑟 , in which 𝐴 is divisible by only one of 𝑝 or 𝑞. At that 

time Ran𝑘 𝐸𝐷 = 1, and the non-torsion points on 𝐸𝐷 can factor 𝐷.



Our works

 Firstly, we focus on a larger family of elliptic curve 𝐸𝐷𝑟: 𝑦
2 = 𝑥3 − 𝐷𝑟𝑥 where 

𝐷 = 𝑝𝑞 is the integer we want to factor and 𝑟 is an arbitrary integer. 
Employing the method of two-descent, we reduce the problem of factoring 
integer to computing the Mordell-Weil group of 𝐸𝐷𝑟: 𝑦

2 = 𝑥3 − 𝐷𝑟𝑥 .

 The second work of this article is to improve their method of calculating 2-
Selmer group. We give a way to compute the 2-Selmer group of a family of 
elliptic curve 𝐸𝐷𝑟: 𝑦

2 = 𝑥3 − 𝐷𝑟𝑥, where 𝐷 = 𝑝𝑞 is a product of two distinct 
odd primes and r is an arbitrary integer.



Parity conjecture

 Corollary: Let elliptic curve 𝐸𝐷: 𝑦
2 = 𝑥3 − 𝐷𝑥, with 4 ∤ 𝐷, and 𝐷 quartic-free . 

We denote the rank of 𝐸𝐷 by 𝑟𝐸 , then

(−1)𝑟𝐸= 𝑤𝐸 = 𝑤∞ ∙ 𝑤2 ∙ ෑ

𝑝2∥𝐷

𝑤𝑝

In which

𝑤∞ = sgn(−𝐷)

𝑤2 = ቊ
−1 𝐷 ≡ 1,3,11,13 𝑚𝑜𝑑 16

1 otherwise

𝑤𝑝 =
−1

𝑝
= ቊ

−1 𝑝 ≡ 3 𝑚𝑜𝑑 4
1 𝑝 ≡ 1 𝑚𝑜𝑑 4



Two-descent method for 𝐸𝐷𝑟

 Considering the elliptic curve 𝐸𝐷𝑟: 𝑦
2 = 𝑥3 − 𝐷𝑟𝑥, denote it by 𝐸. And denote 

its dual curve 𝐸−4𝐷𝑟: 𝑦
2 = 𝑥3 + 4𝐷𝑟𝑥 by ෠𝐸.

 Define the two-descent map:

α: 𝐸(ℚ) → ൘
ℚ×

ℚ×2

𝑥, 𝑦 ⟼ ҧ𝑥
∞⟼ 1
𝑇 ⟼ −𝐷𝑟

ෝα: ෠𝐸(ℚ) → ൘
ℚ×

ℚ×2

ො𝑥, ො𝑦 ⟼ ҧො𝑥
ෝ∞⟼ 1
෠𝑇 ⟼ 𝐷𝑟



Theorem: we have the following properties:

 (1)α, ෝα are group homomorphisms

 (2)Imα ⊆< −1,2, 𝑏𝑖 >≜ S, 𝑏𝑖|𝐷𝑟,

Imෝα ⊆< −1,2, 𝑏𝑖 >≜ ෠S, 𝑏𝑖|4𝐷𝑟.

 (3)If 𝑏 ∈ Imα, then 
−𝐷𝑟

𝑏
∈ Imα,

If𝑏 ∈ Imෝα, then 
𝐷𝑟

𝑏
∈ Imෝα.

 (4) 1,−𝐷𝑟 ⊆ Imα, 1, 𝐷𝑟 ⊆ Imෝα

 (5) Imα ∙ Imෝα = 2𝑟𝐸+2



 Theorem : For ∀𝑏 ∈ 𝑆, 𝑏 ∈ Imα ⟺ 𝐶𝑏
′ : 𝑤2 = 𝑏 −

2𝑟𝐷

𝑏
𝑧4 has solutions in ℚ.

For∀𝑏 ∈ መ𝑆, 𝑏 ∈ Imෝα ⟺ 𝐶𝑏: 𝑤
2 = 𝑏 +

8𝑟𝐷

𝑏
𝑧4 has solutions in ℚ.

 But deciding whether 𝐶𝑏
′ and 𝐶𝑏 have solutions in ℚ is a difficult problem, so 

instead we consider whether they have solutions on local ℚ𝑝 (𝑝|2𝐷𝑟∞).

 Definition: Define 𝑆′(𝜙) ≜ 𝑏 ∈ 𝑆|𝐶𝑏
′(ℚ𝑝) ≠ Φ, ∀𝑝|2𝐷𝑟∞ , called the 2-

Shafarevich group of 𝐸.

Define 𝑆(𝜙) ≜ 𝑏 ∈ መ𝑆|𝐶𝑏(ℚ𝑝) ≠ Φ, ∀𝑝|2𝐷𝑟∞ , called the 2-

Shafarevich group of ෠𝐸.



Theorem: Suppose 𝑟𝐸 ≥ 1, 𝑆′(𝜙) = 4, 𝑆(𝜙) = 2 or 𝑆(𝜙) = 4, 𝑆′(𝜙) = 2 ⟺
ш′ 𝜙 = ш 𝜙 = 1 and 𝑟𝐸 = 1.

Proposition: When 𝑆′ 𝜙 = 1,𝐴,
−2𝐷𝑟′

𝐴
, −2𝐷𝑟′ , 𝑆 𝜙 = 1,2𝐷𝑟′ ,𝑟𝐸 = 1. At that time, the 

map α, ෝα can be written as

α: 𝐸(ℚ) → ൘
ℚ×

ℚ×2

∞⟼ 1

𝑇 ⟼ −𝐷𝑟

2𝑘 + 1 𝑃 ⟼ 𝐴 𝑜𝑟
−𝐷𝑟

𝐴

2𝑘 + 1 𝑃 + 𝑇 ⟼
−𝐷𝑟

𝐴
𝑜𝑟 𝐴

2𝑘𝑃 ⟼ 1

2𝑘𝑃 + 𝑇 ⟼ −2𝐷𝑟

ෝα: ෠𝐸(ℚ) → ൘
ℚ×

ℚ×2

ෝ∞⟼ 1

෠𝑇 ⟼ 𝐷𝑟

𝑘 ෠𝑃 ⟼ 1

𝑘 ෠𝑃 + ෠𝑇 ⟼ 𝐷𝑟



Theorem 1: Assuming 𝐷 = 𝑝𝑞 is a product of two distinct odd primes, suppose 
the parity conjecture is true, then

 (1) There exists infinity many integer 𝑟, such that the rank of 𝐸𝐷𝑟 is greater or 
equal to one.

 (2) When the rank of 𝐸𝐷𝑟 is greater or equal to one, and 𝑆 𝜙 = {1, 𝐷𝑟}, 

𝑆′ 𝜙 = 1, 𝐴,−𝐷𝑟/𝐴,−𝐷𝑟 , where 𝐷𝑟 means 𝐷𝑟 with the square factors 
removed, 𝐴 is divisible by only one of 𝑝 or 𝑞, then 𝐸𝐷𝑟 has conjectural rank 
one. At that time, 𝑣𝑝(𝑥(𝑘𝑃)) ≠ 𝑣𝑞(𝑥(𝑘𝑃)) for any odd integer 𝑘, in which 𝑃 is 

the generator of 𝐸2𝐷𝑟 . Then we can factor 𝐷.



 Theorem 2: Let 𝐶𝑑: 𝑤
2 = 𝑑 +

𝐷

𝑑
𝑧4, 𝐷 = (−1)𝑚2𝑛ς𝑖=1

𝑛1 𝑝𝑖ς𝑗=1
𝑛2 𝑞𝑗

2ς𝑘=1
𝑛3 𝑟𝑘

3 ,

𝑑|𝐷 and d is square-free.  We have:



The proof of Burhanuddin and Huang



D r p,q,r

D ≡ 1mod 8

r ≡ 1 mod 8
p ≡ 5,7 mod 8 and

𝐷

𝑟
= −1

r ≡ 3 mod 8
p ≡ 3,7 mod 8 and

𝐷

𝑟
= −1

r ≡ 7 mod 8
p ≡ 3,5 mod 8 and

𝐷

𝑟
= −1

D ≡ 3mod 8

r ≡ 1 mod 8
p ≡ 5,7 mod 8 and

𝐷

𝑟
= −1

r ≡ 3 mod 8 p ≡ 5,7 mod 8

r ≡ 5 mod 8

p ≡ 1mod 8 and
𝑟

𝑝
= −1

p ≡ 3mod 8 and
𝑟

𝑞
= −1

p ≡ 5mod 8 and
𝑟

𝑞
= 1

p ≡ 7mod 8 and
𝑟

𝑝
= 1

r ≡ 7 mod 8 p ≡ 1,5 mod 8 and
𝑟

𝑝
= −1

p ≡ 3,7 mod 8 and
𝑟

𝑞
= −1

D ≡ 5mod 8

r ≡ 1 mod 8
p ≡ 3,7 mod 8 and

𝐷

𝑟
= −1

r ≡ 3 mod 8 p ≡ 1,7 mod 8 and
𝑟

𝑝
= −1

p ≡ 3,5 mod 8 and
𝑟

𝑞
= −1

r ≡ 5 mod 8 p ≡ 3,7 mod 8

r ≡ 7 mod 8

p ≡ 1mod 8 and
𝑟

𝑝
= −1

p ≡ 3mod 8 and
𝑟

𝑝
= 1

p ≡ 5mod 8 and
𝑟

𝑞
= −1

p ≡ 7mod 8 and
𝑟

𝑞
= 1

D ≡ 7mod 8

r ≡ 1 mod 8
p ≡ 3,5 mod 8 and

𝐷

𝑟
= −1

r ≡ 3 mod 8 p ≡ 1mod 8 and
𝑟

𝑝
= −1

p ≡ 3mod 8 and
𝑟

𝑞
= 1

p ≡ 5mod 8 and
𝑟

𝑝
= 1

p ≡ 7mod 8 and
𝑟

𝑞
= −1

r ≡ 5 mod 8

p ≡ 1mod 8 and
𝑟

𝑝
= −1

p ≡ 3mod 8 and
𝑟

𝑝
= 1

p ≡ 5mod 8 and
𝑟

𝑞
= 1

p ≡ 7mod 8 and
𝑟

𝑞
= −1



Remaining Problem

1. While D varies in ℤ, probability that the points on 
𝐸𝐷𝑟 can factor 𝐷.

2. More efficient way to find the point on 𝐸𝐷𝑟 .

3.There is a way to find point on surface 𝑦2 = 𝑥3 −
𝐷𝑟𝑧?



,

Thanks!


