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Abstract. Fuzzy signature is a signature scheme in which the sign-
ing key is no longer uniformly generated nor precisely reproducible but
a fuzzy string with enough entropy such as biometric information. In
this paper, we give a variant definition of fuzzy signature and propose
a generic construction of fuzzy signature which uses a fuzzy extractor
and a signature scheme with simple key generation process as building
blocks. Meanwhile, we give two instantiations of our generic construction.
The first instantiation results in a fuzzy signature scheme which is secure
under the computational Diffie-Hellman (CDH) assumption over bilinear
groups in the standard model. The second instantiation results in a fuzzy
signature that is secure in the random oracle model under the worst-case
hardness of the Õ(n1.5)-SIVP problem in general lattices. Moreover, com-
pared with previous work, our fuzzy signatures have weaker requirements
for the fuzzy signing key, which makes our fuzzy signatures more practi-
cal.
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1 Introduction

The security of cryptographic primitives depends on the security of private key.
The private key generally needs to be uniformly distributed and carefully kept.
Once the private key is leaked, there is no security at all. Private key is hard to
remember, and securely keeping it puts a burden on the user. Since biometric
information is inherent and unique, one of the promising approaches to funda-
mentally solve this problem is to use biometric information (e.g., fingerprint [11],
face and iris [4]) as a cryptographic private key. However, since biometric data is
not uniformly distributed and fluctuates each time when it is captured, it cannot
be used directly as a cryptographic key.

A lot of works has been devoted to researching the application of biometric
information in cryptography. For example, fuzzy extractor [6], fuzzy signature
[14] and biometric-based remote user authentication [1, 2, 7].

In this paper, we will focus on the study of fuzzy signature [13]. Fuzzy sig-
nature is a digital signature in which the signing key need not to be uniformly
distributed or accurate reproducible. We call such signing key as fuzzy signing



key. With fuzzy signature people can use his/her biometric characteristics (such
as retina, iris, face and fingerprint) as the fuzzy signing key to sign messages. In
fuzzy signature, the key generation algorithm KeyGenF takes the fuzzy signing
key sk (a sample of a user’s biometric characteristic) as input and outputs a
verification key vk. The signing algorithm SignF takes the fuzzy signing key sk′

(another sample of the same biometric characteristic) and a message m as input,
and outputs a signature σ. The verification algorithm VerifyF on input vk,m, σ
outputs 0/1 meaning σ is invalid or valid. If the two fuzzy signing keys sk′ and
sk are close enough, the signature σ will be verified as valid by the verification
key vk, where vk is generated by sk.

Takahashi et al. [13] gave the formal definition of fuzzy signature. They gave a
generic construction of fuzzy signature based on a signature scheme with certain
homomorphic properties regarding keys and signatures, and a tool called linear
sketch. They showed a concrete instantiation of their generic construction based
on the Waters signature scheme [15]. However, the resulting fuzzy signature has
a weakness that the fuzzy signing key sk needs to be uniformly distributed.
In another word, if a user wants to use his/her biometric characteristic such
as fingerprint as the fuzzy signing key, then the sample of his/her fingerprint
is assumed to be uniformly distributed. It seems impossible that samples from
biometric characteristics follow the uniform distribution. In order to solve this
problem, in paper [9], Matsuda et al. gave a new construction of fuzzy signature
by relaxing the requirements of the building blocks in [13]. By instantiation,
they got a fuzzy signature which does not need the fuzzy signing key uniform
anymore, but the resulting fuzzy signature is secure only in the random oracle
model.

Takahashi et al. also defined the security model of fuzzy signature [13]. Recall
that the key generation algorithm of fuzzy signature KeyGenF on input a fuzzy
signing key sk outputs a verification key vk and the signing algorithm SignF on
input the fuzzy signing key sk′ and a message m outputs a signature σ, where
sk and sk′ are two different samples of the same biometric characteristic. In
their security model, it is required that the error distribution e between the two
different samples sk and sk′ is independent of the biometric characteristic. This
requirement makes the fuzzy signature far from practical application because
it seems impossible that the error distribution between two different samples is
independent of the biometric characteristic. A natural question arises:

Is it possible to design a fuzzy signature which has a more practical require-
ment for the fuzzy signing key?

1.1 Our Contributions

We answer the above question in the affirmative. Our contributions can be listed
as follows:

– We give a formal definition of fuzzy signature which is a little different from
that by Takahashi et al. [14]. The difference between our fuzzy signature and
Takahashi et al.’s is that when generating a signature of a message m, our
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signature algorithm needs both the fuzzy signing key sk and the verification
key vk as input while Takahashi et al.’s does not need vk.

– We define a new security model of fuzzy signature which is called m-existentially
unforgeable under chosen message attack (m-EUF-CMA) security. In this se-
curity model, we only require that the fuzzy signing key sk has entropy larger
than m and the error distribution between different samples sk and sk′ can
be arbitrary depend on the biometric characteristic.

– We provide a generic construction of fuzzy signature based on a fuzzy extrac-
tor (FE) and a signature scheme (SIG) with a simple key generation process.
The simple key generation process says that the key generation algorithm
first picks a secret key uniformly at random from the secret key space, then
computes the corresponding verification key deterministically from the secret
key.

– We give two instantiations of our generic construction.

• When instantiating SIG with the Waters signature scheme [15] and FE
constructed in [6], we obtain a fuzzy signature scheme which is secure
in the standard model under the computational Diffie-Hellman (CDH)
assumption in bilinear groups and only assumes that the fuzzy signing
key has enough entropy.

• When instantiating SIG with the lattice-based signature constructed in
[8] and FE constructed in [6], we obtain a fuzzy signature scheme which
is secure in the random oracle model based on the worst-case hardness
of the Õ(n1.5)-SIVP problem in general lattices and only assumes that
the fuzzy signing key has enough entropy.

Our fuzzy signatures have a weaker requirement for the fuzzy signing key, which
makes the fuzzy signature more practical. In Table 1, we compare our work with
previous fuzzy signature schemes.

Table 1. Comparison with some known fuzzy signature schemes. Let SK be the dis-
tribution of the fuzzy signing key and |SK| be the size of key space SK. “Entropy
Requirement” asks what is the entropy requirement for the fuzzy signing key. “Cor-
relation” asks the relationship of error distribution e and the biometric characteristic
W , where e is the error distribution between the fuzzy signing key sk and sk′ (two
samples of the same biometric characteristic W ). “Assumption” asks which assumption
the fuzzy signature is based on. “Standard Model” asks whether the fuzzy signature is
secure in the standard model.

Fuzzy Signature Schemes Entropy Requirement Correlation Assumption
Stantard
Model

TMMHN [13] H∞(SK) = log|SK| independent CDH Yes

MTMH [9] H∞(SK) ≥ m independent DL No

Our first instantiation H∞(SK) ≥ m arbitrary CDH Yes

Our second instantiation H∞(SK) ≥ m arbitrary Õ(n1.5)-SIVP No
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Fig. 1. The Construction of Fuzzy Signature

1.2 Our Approach

Our construction makes use of a fuzzy extractor and a signature scheme with a
simple key generation process. Recall that a fuzzy extractor consists of two effi-
cient algorithms (Gen,Rep). The generation algorithm Gen on input a sample w
of a biometric characteristicW (such as retina, iris, face and fingerprint) outputs
a public helper string P together with an extracted string R. The reproduction
algorithm Rep on input w′ and the public helper string P will reproduce R if
w′ is close enough to w. The security of fuzzy extractor guarantees that R is
(pseudo-)random if W has enough entropy. A signature scheme with a simple
key generation process says that there exists a deterministic PPT algorithm KG
such that the key generation algorithm KeyGen can be written as follows:

KeyGen : [ sk ←$ SK; vk ← KG(sk); Return(vk, sk). ],

where SK is the secret key space of the signature.
Our generic construction of fuzzy signature is shown in Fig. 1 in which we

omit the public parameters. More precisely,

– The key generation algorithm KeyGenF on input the fuzzy signing key sk
which is a sample of a biometric characteristic (e.g., fingerprint), outputs
the verification key vk. It proceeds as follow, the fuzzy signing key sk is fed
to the generation algorithm Gen of fuzzy extractor. The generation algorithm
Gen outputs a public helper string P and a uniformly random string which

will be served as the signing key s̃k of the underlying signature scheme (not

fuzzy). The deterministic PPT algorithm KG on input s̃k outputs ṽk. The

verification key is vk = (ṽk, P ).
– The signature algorithm SignF on input a fuzzy signing key sk′ and the

verification key vk will invoke the reproduction algorithm Rep to reproduce

the signing key s̃k of the underlying signature scheme(not fuzzy) with the

help of P , then use s̃k to sign the message m.
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– The verification algorithm VerifyF on input (vk,m, σ), parses vk = (ṽk, P )
and invokes the verification algorithm of the underlying signature scheme

b← Verify(ṽk,m, σ).

Correctness. The key generation algorithm on input sk outputs a verification
key vk. We need to show that for any sk′ close enough to sk, the signature
generated by sk′ will be verified as valid. Observe that the signature algorithm
SignF on input a fuzzy signing key sk′ and the verification key vk will invoke

the reproduction algorithm Rep to reproduce the signing key s̃k and use s̃k as
the signing key to sign the message m. By the correctness of fuzzy extractor,

if sk and sk′ are close enough, then s̃k can be accurately reproduced, then by
the correctness of the underlying signature scheme, the signature by sk′ can be
verified valid.

Security. The security of our generic construction of fuzzy signature scheme can
be reduced to the security of the underlying signature scheme and the underlying
fuzzy extractor. The security of underlying fuzzy extractor guarantees that if

the input sk has enough entropy, then the extracted signing key s̃k is uniformly
distributed. By the correctness of fuzzy extractor, if sk′ is close enough to sk,

then s̃k will always be accurately reproduced. Then the security of the fuzzy
signature can be reduced to the security of the underlying signature scheme.

2 Preliminaries

Let N, Z and R denote the sets of natural numbers, integers and real numbers,
respectively. For a natural number n ∈ N, we define [n] := {1, · · · , n}. The notion
“x← y” denotes that y is (deterministically) assigned to x. For a finite set S, the
notion “|S|” refers to the size of S, and the notion “x←$ S” refers to that x is
uniformly chosen from S. For two bit-strings x and y, the notion |x| refers to the
bit length of x, and the notion x ‖ y refers to the concatenation of x and y. “PPT”
is short for probabilistic polynomial-time. If A is a probabilistic algorithm, the
notion y ← A(x; r) refers to that A runs with input x and randomness r and
outputs y. For a primitive XX and a security notion YY, by ExptYY

XX,A(k)⇒ 1, we
mean that the security experiment outputs 1 after interacting with an adversary
A. By AdvYY

XX,A(k), we denote the advantage of a PPT adversary A and define

AdvYY
XX(λ) := maxPPTA AdvYY

XX,k(k).

Definition 1 (Negligible function). A function f is negligible if for every
polynomial p(·) there exists an N such that for all integers n > N it holds that
f(n) < 1

p(n) .

Definition 2 (Metric spaces). A metric space is a set W with a distance
function dis :W ×W → R+ = [0,∞). For all x, y, z ∈ W, the distance function
should satisfy the following conditions:

1. Reflexivity : dis(x, y) = 0 if and only if x = y;
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2. Symmetry : dis(x, y) = dis(y, x);
3. Triangle inequality : dis(x, z) ≤ dis(x, y) + dis(y, z).

We usually consider multi-dimensional metric spaces of form W = Fn for some
alphabet F (usually a finite filed Fp) equipped with the Hamming distance. For
any two element x, y ∈ W, the Hamming distance dis(x, y) is the number of
coordinates in which they differ. For an element x ∈ W, let dis(x) := dis(x, 0).

Definition 3 (Min-entropy). [12] For a random variable X, the min-entropy
of X, denoted by H∞(X), is defined by

H∞(X) := −log2(maxx Pr[X = x]).

Definition 4 (Average min-entropy). [12] For two random variables X and

Y, the average min-entropy of X given Y, denoted by H̃∞(X|Y), is defined by

H̃∞(X|Y) := −log2( E
y←Y

[max
x∈X

Pr[X = x|Y = y]]).

Definition 5 (Statistical distance). The statistical distance between two prob-
ability distributions A and B is

SD(A,B) =
1

2

∑
v

|Pr (A = v)− Pr(B = v)|.

Definition 6 (Universal hash functions). [3] A family of hash functions
HI= {Hi : X → Y} is universal, if for all distinct x, x′ ∈ X ,

Pr[Hi : Hi(x) = Hi(x
′) ] ≤ 1

|Y|
,

where i is uniformly chosen from I.

Definition 7 (Strong extractor). [10] A function Ext : X × I → T is an
average-case (X ,m, T , ε)-strong extractor with seed I ∈ I, if for any variable X
over X and any variable Y such that H̃∞(X|Y ) ≥ m, we have

SD((Ext(X, I), Y, I), (U, Y, I)) ≤ ε,

where I and U are uniformly distributed over I and T , respectively.

In particular, universal hash functions are average-case (X ,m, T , ε)-strong ex-
tractors.

Definition 8 (Secure sketch). [6] A (W,m, m̃, t)-secure sketch consists of a
pair of PPT algorithms (SS,Rec) with the following specifications:

– SS(w) on input w ∈ W outputs a sketch s.
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– Rec(w′, s) on input w′ ∈ W and a sketch s outputs w̃.

It also satisfies the following properties:
Correctness. If dis(w,w′) ≤ t, then w = Rec(w′,SS(w)).

Privacy. For any distribution W overW, if H∞(W ) ≥ m, then H̃∞(W |SS(W ))
≥ m̃.

An instantiation of secure sketch is the syndrome-based secure sketch [5]. Recall
that an efficiently decodable [n, k, 2t + 1]F -linear error correcting code C can
correct up to t errors and it is a linear subspace of Fn of dimension k. The parity-
check matrix of C is an (n−k)×n matirx H whose rows generate the orthogonal
space C⊥. For any v ∈ Fn, the syndrome of v is defined by syn(v) := Hv. Note
that v ∈ C ⇔ syn(v) = 0. For any c ∈ C, syn(c + e) = syn(c) + syn(e) = syn(e).
A linear error-correcting code implies a syndrome-based secure sketch as shown
below.

– SS(w) := syn(w) = s.
– Rec(w′, s) := w′ − Decode(syn(w′)− s).

2.1 Bilinear Groups

We say that BG = (p,G,GT , g, e) constitutes (symmetric) bilinear groups if p is
a prime, G and GT are cyclic groups with order p, g is a generator of G, and
e : G × G → GT is an efficiently (in |p|) computable mapping satisfying the
following two properties:

– Bilinearity: For all g ∈ G and a, b ∈ Zp, it holds that e(ga, gb) = e(g, g)ab.
– Non-degeneracy: For all generators g of G, e(g, g) ∈ GT is not the identity

element of GT .

For convenience, we denote by BGGen an algorithm (referred to as a “bilinear
group generator”) that, on input 1k, outputs a description of bilinear groups
BG = (p,G,GT , g, e) such that |p| = Θ(k).

2.2 Signature Scheme

Definition 9 (Signature scheme). A signature scheme SIG is a tuple of PPT
algorithms (Setup,KeyGen,Sign,Verify) satisfying the following:

– Setup(k) → pp. The setup algorithm Setup takes a security parameter k as
input, and outputs the public parameter pp.

– KeyGen(pp) → (vk, sk). The key generation algorithm KeyGen takes the
public parameter pp as input, and outputs a verification/signing key pair
(vk, sk).

– Sign(pp, sk,m) → σ. The signing algorithm Sign takes the public parameter
pp, the signing key sk and a message m from message space M as input,
and outputs a signature σ.
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– Verify(pp, vk,m, σ) → 1/0. The (deterministic) verification algorithm Verify
takes the public parameter pp, a verification key vk, a message m and a
signature σ as input, and outputs a bit b, with b = 1 meaning valid and
b = 0 meaning invalid.

Correctness. We require that for all pp ← Setup(k), (vk, sk) ← KeyGen(pp),
and messages m ∈M, we have

Verify(pp, vk,m,Sign(pp, sk,m)) = 1.

Definition 10 (EUF-CMA security). A signature scheme SIG is said to be
existentially unforgeable under non-adaptive chosen message attack (EUF-CMA),
if for all PPT adversaries A,

AdvEUF-CMA
SIG,A (k) := Pr[ ExptEUF-CMA

SIG,A (k)⇒ 1 ] 6 negl(k).

Here ExptEUF-CMA
SIG,A (k) is an experiment played between an adversary A and a

challenger C as follows.

ExptEUF-CMA
SIG,A (k):

1. The challenger C invokes pp ← Setup(k), generates (vk, sk) ← KeyGen(pp)
and initializes the set of chosen-message queries Q = ∅ issued by the adver-
sary. Subsequently, it returns pp and vk to A.

2. The adversary A may adaptively make signing oracle queries of the following
form

– A sends a message mi ∈M to the challenger C.

– C invokes σi ← Sign(pp, sk,mi), adds mi to the set Q and returns σi to
A.

3. Finally, A submits a message-signature pair (m∗, σ∗). The experiment out-
puts 1 if m∗ /∈ Q ∧ Verify(pp, vk,m∗, σ∗) = 1 and 0 otherwise.

Simple key generation process. We will use signature schemes with a struc-
tural property which is called the simple key generation process property. Simple
key generation process property says that the key generation algorithm KeyGen
first picks a secret key sk uniformly at random from the secret key space, then
computes the corresponding verification key vk deterministically from sk.

Definition 11 (Simple key generation process, [14]). Let SIG=(Setup,Ke-
yGen,Sign,Verify) be a signature scheme. We say SIG has a simple key generation
process if each pp output by Setup specifies the secret key space SKpp, and there
exists a deterministic PPT algorithm KG such that the key generation algorithm
KeyGen(pp) can be written as follows:

KeyGen(pp) : [ sk ←$ SKpp; vk ← KG(pp, sk);Return (vk, sk). ].
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2.3 Fuzzy Extractor

Definition 12 (Fuzzy extractor). [6] An (W,m,R, t, ε)-fuzzy extractor FE =
(Init,Gen,Rep) consists of three PPT algorithms:

– Init(k) → pp. The initialization algorithm Init takes a security parameter k
as input, and outputs the public parameter pp.

– Gen(pp, w)→ (P,R). The generation algorithm Gen takes the public param-
eter pp and w ∈ W as input, and outputs a public helper string P and an
extracted string R ∈ R.

– Rep(pp, P, w′) → R/⊥. The reproduction algorithm Rep takes pp, P and
w′ ∈ W as input, and outputs an extracted string R or ⊥.

Correctness. If dis(w,w′) ≤ t, then for all (R,P ) ← Gen(pp, w), it holds that
R← Rep(pp, P,w′).

Security. Let W be a distribution on W, if H∞(W ) ≥ m, then for all PPT
adversaries A,

AdvindFE,A(k) = |Pr[A(P,R)⇒ 1]− Pr[A(P,U)⇒ 1]| ≤ ε,

where (P,R)← Gen(pp, w), w ←W and U ←$ R.

3 Fuzzy Signature

A fuzzy signature scheme is a special signature scheme whose signing key is
no longer required to be uniformly random, but can be a noise random string
such as biometric data. We call such signing key as fuzzy signing key. Here, we
give the formal definition of fuzzy signature, which is a little different from the
definition by Takahashi et al. [14]. The difference between our fuzzy signature
and Takahashi et al.’s is that when generating a signature of a message m, our
signature algorithm not only needs the fuzzy signing key but also needs vk as
input while Takahashi et al.’s does not need vk.

Definition 13 (Fuzzy signature). Let SK be the fuzzy signing key space and
M be the message space. An (SK,M, t)-fuzzy signature scheme SIGF consists of
the following four PPT algorithms (SetupF,KeyGenF,SignF,VerifyF):

– SetupF(k)→ pp. The setup algorithm SetupF takes a security parameter k as
input, and outputs a public parameter pp.

– KeyGenF(pp, sk)→ vk. The key generation algorithm KeyGenF takes the pub-
lic parameter pp and a fuzzy signing key sk ∈ SK as input, and outputs a
verification key vk.

– SignF(pp, vk, sk′,m) → σ. The signing algorithm SignF takes the public pa-
rameter pp, the verification key vk, a new fuzzy signing key sk′ ∈ SK and a
message m ∈M as input, and outputs a signature σ.

– VerifyF(pp, vk,m, σ)→ 0/1. The verification algorithm VerifyF takes the pub-
lic parameter pp, the verification key vk, the message m and the signature σ
as input, and outputs a bit 1 (accept) or 0 (reject).
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Correctness. We require that for all pp ← SetupF(k), vk ← KeyGenF(pp, sk),
and messages m ∈M, if dis(sk, sk′) ≤ t, it holds that

VerifyF(pp, vk,m,SignF(pp, vk, sk′,m)) = 1.

In [14], Takahashi et al. assumed that the error distribution between sk and
sk′ (two samples of the same biometric characteristic) are independent of the
biometric characteristic. More precisely, they assume that for all objects W that
produce the fuzzy data (which will be used as the fuzzy signing key), if W
produces a data sk at the first measurement, and if the same object is measured
next time, then the measured data sk′ follows the distribution {e ← Φ; sk′ ←
sk + e : sk′}, and error distribution Φ is independent of W . This requirement
is too strong since it seems impossible that error distribution between different
samples is independent of the biometric characteristic. So we try to relax the
requirement in [14] and define the following security model of fuzzy signature.

Definition 14 (m-EUF-CMA security). An (SK,M, t)- fuzzy signature sch-
eme is said to be m-existentially unforgeable under non-adaptive chosen message
attack (m-EUF-CMA), if for any distribution SK over metric space SK with
H∞(SK) ≥ m, for any PPT adversaries A, it holds that

Advm-EUF-CMA
SIGF,A (k) := Pr[Exptm-EUF-CMA

SIGF,A (k)⇒ 1] 6 negl(k).

Here Exptm-EUF-CMA
SIG,A (k) is an experiment played between an adversary A and a

challenger C as follows.

Exptm-EUF-CMA
SIG,A (k):

1. The challenger C invokes pp ← SetupF(k), samples sk ← SK, generates
vk ← KenGenF(pp, sk) and initializes the set of chosen-message queries Q =
∅ issued by the adversary. Subsequently, it returns pp and vk to A.

2. The adversary A may adaptively make signing oracle queries of the following
form
– A sends a message mi ∈M and a function fi ∈ Φ to challenger C, where
Φ := {∀sk ∈ SK, f(sk) < t|f : SK → SK}.

– C invokes σi ← SignF(pp, vk, sk + fi(sk),mi), adds mi to the set Q and
returns σi to A.

3. Finally, A submits a message-signature pair (m∗, σ∗). The experiment out-
puts 1 if m∗ /∈ Q ∧ VerifyF(pp, vk,m∗, σ∗) = 1 and 0 otherwise.

Remark 1. In our security model, when adversary A making a signing oracle
query of message mi, A will send a function fi ∈ Φ to challenger C as well. Note
that Φ := {∀sk ∈ SK, f(sk) < t|f : SK → SK}. In this way, we model that the
error distribution between different samples of the same biometric characteristic
can be arbitrary depend on the biometric characteristic except the error is bound
by t. It is reasonable to bound the error, because different samples of the same
biometric characteristic are similar. Meanwhile, it is necessary to bound the
error, otherwise there is no security at all.
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4 Construction of Fuzzy Signature

Figure 2 illustrates our construction of fuzzy signature SIGF = (SetupF,KeyGenF,
SignF,VerifyF) which makes use of the following building blocks:

– A signature scheme SIG=(Setup,KeyGen,Sign,Verify) with a simple key gen-
eration process (i.e., there exists a deterministic PPT algorithm KG). Let its

secret key space be S̃K and message space be M.
– An (SK,m, S̃K, t, ε)-fuzzy extractor FE=(Init,Gen,Rep).

SetupF(k):

pp1 ← Init(k)

pp2 ← Setup(k)

pp← (pp1, pp2)

Return pp

KeyGenF(pp, sk):

(pp1, pp2)← pp

(P, s̃k)← Gen(pp1, sk)

ṽk ← KG(pp2, s̃k)

vk ← (ṽk, P )

Return vk

SignF(pp, vk, sk′,m):

(pp1, pp2)← pp

(ṽk, P )← vk

s̃k′ ← Rep(pp1, P, sk
′)

σ ← Sign(pp2, s̃k
′,m)

Return σ

VerifyF(pp, vk,m, σ):

(pp1, pp2)← pp

(ṽk, P )← vk

b← Verify(pp2, ṽk,m, σ)

Return b

Fig. 2. Our generic construction of fuzzy signature scheme SIGF.

4.1 Correctness

The correctness of our fuzzy signature scheme SIGF is guaranteed as follows.

Theorem 1. The correctness of SIGF follows from the correctness of the under-
lying signature scheme SIG and the underlying (SK,m, S̃K, t, ε)-fuzzy extractor
FE.

Proof. By the correctness of FE, if dis(sk, sk′) ≤ t, then s̃k′ = s̃k, where

(P, s̃k) ← Gen(pp1, sk), s̃k′ ← Rep(pp1, P, sk
′). Note that ṽk ← KG(pp2, s̃k),

by the correctness of SIG, for any message m ∈M, it follows that

Verify(pp2, ṽk,m, Sign(pp2, s̃k
′,m)) = 1.

More precisely,

VerifyF(pp, vk,m,SignF(pp, vk, sk′,m))

= Verify(pp2, ṽk,m, SignF(pp, vk, sk′,m)) (by the construction)

= Verify(pp2, ṽk,m, Sign(pp2, s̃k
′,m)) (by the construction)

= Verify(pp2, ṽk,m, Sign(pp2, s̃k,m)) (by the correctness of FE)

= 1 (by the correctness of SIG)

�
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4.2 Security

The security of our fuzzy signature scheme SIGF is guaranteed as follows.

Theorem 2. If the underlying signature scheme SIG with secret key space S̃K
and message space M satisfies EUF-CMA security and the underlying FE is an
(SK,m, S̃K, t, ε)-fuzzy extractor, our construction SIGF is an (SK,M, t)-fuzzy
signature that satisfies m-EUF-CMA security.

Proof. Let A be an arbitrary PPT algorithm adversary that attacks the m-EUF-
CMA security of SIGF. We will consider three indistinguishable games, where the
first game Game 0 is the original game Exptm-EUF-CMA

SIGF,A (k). For i ∈ {0, 1, 2}, denote
by Si the event that A wins (i.e., the experiment returns 1) in Game i. Our goal
is to show that Advm-EUF-CMA

SIGF,A (k) := Pr[Exptm-EUF-CMA
SIGF,A (k)⇒ 1] is negligible.

Game 0. Game 0 is just the experiment Exptm-EUF-CMA
SIGF,A (k). More precisely,

1. The challenger C invokes pp1 ← Init(k) and pp2 ← Setup(k), samples sk ←
SK, invokes (P, s̃k) ← Gen(pp1, sk) and ṽk ← KG(pp2, s̃k), sets pp ←
(pp1, pp2) and vk ← (ṽk, P ) and initializes the set of chosen-message queries
Q = ∅ issued by the adversary. Subsequently, it returns pp and vk to A.

2. The adversary A may adaptively make signing oracle queries of the following
form
– A sends a message mi ∈M and a function fi ∈ Φ to challenger C, where
Φ := {∀sk ∈ SK, f(sk) < t|f : SK → SK}.

– C parses pp as pp1 and pp2, parses vk as ṽk and P , invokes s̃k′i ←
Rep(pp1, P, sk + fi(sk)), σi ← Sign(pp2, s̃k

′
i,mi), adds mi to the set Q

and returns σi to A.
3. Finally, A submits a message-signature pair (m∗, σ∗). Then, challenger C

parses pp as pp1 and pp2, parses vk as ṽk and P , invokes b← Verify(pp2, ṽk,m
∗,

σ∗). The experiment outputs 1 if m∗ /∈ Q ∧ b = 1 and 0 otherwise.

Obviously,

Advm-EUF-CMA
SIGF,A (k) = Pr[Exptm-EUF-CMA

SIGF,A (k)⇒ 1] = Pr[S0].

Game 1. This game is identical to Game 0, except that in step 2, when the

challenger answers the signing oracle queries, it uses s̃k as the signing key of the

underlying signature scheme other than s̃k′i ← Rep(pp1, P, sk
′
i). More precisely,

1. The challenger C invokes pp1 ← Init(k) and pp2 ← Setup(k), samples sk ←
SK, invokes (P, s̃k) ← Gen(pp1, sk) and ṽk ← KG(pp2, s̃k), sets pp ←
(pp1, pp2) and vk ← (ṽk, P ) and initializes the set of chosen-message queries
Q = ∅ issued by the adversary. Subsequently, it returns pp and vk to A.

2. The adversary A may adaptively make signing oracle queries of the following
form
– A sends a message mi ∈M and a function fi ∈ Φ to challenger C, where
Φ := {∀sk ∈ SK, f(sk) < t|f : SK → SK}.
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– C parses pp as pp1 and pp2, invokes σi ← Sign(pp2, s̃k,mi), adds mi to
the set Q and returns σi to A.

3. Finally, A submits a message-signature pair (m∗, σ∗). Then, challenger C
parses pp as pp1 and pp2, parses vk as ṽk and P , invokes b← Verify(pp2, ṽk,m

∗,
σ∗). The experiment outputs 1 if m∗ /∈ Q ∧ b = 1 and 0 otherwise.

Lemma 1. Pr[S1] = Pr[S0].

Proof. The only difference between Game 0 and Game 1 is the signing key used

in the signing oracle. In Game 1 the challenger uses s̃k as the signing key, while

in Game 0 the challenger uses s̃k′i where s̃k′i ← Rep(pp1, P, sk + fi(sk)).
Since the function fi is chosen by the adversary A from the set Φ, where

Φ := {∀sk ∈ SK, f(sk) < t|f : SK → SK}, we have dis(sk, sk + fi(sk)) ≤ t. By

the correctness of the underlying (SK,m, S̃K, t, ε)-fuzzy extractor FE, we have

s̃k′i = s̃k. Therefore, the change between Game 0 and Game 1 is just conceptual.
It follows that

Pr[S1] = Pr[S0].

ut

Game 2. This game is identical to Game 1, except that the signing key s̃k is

uniformly chosen from S̃K other than (P, s̃k)← Gen(pp1, sk). More precisely,

1. The challenger C invokes pp1 ← Init(k) and pp2 ← Setup(k), samples sk ←
SK, invokes (P, s̃k)← Gen(pp1, sk), samples U ←$ S̃K, set s̃k ← U , invokes

ṽk ← KG(pp2, s̃k), sets pp← (pp1, pp2) and vk ← (ṽk, P ) and initializes the
set of chosen-message queries Q = ∅ issued by the adversary. Subsequently,
it returns pp and vk to A.

2. The adversary A may adaptively make signing oracle queries of the following
form
– A sends a message mi ∈M and a function fi ∈ Φ to challenger C, where
Φ := {∀sk ∈ SK, f(sk) < t|f : SK → SK}.

– C parses pp as pp1 and pp2, invokes σi ← Sign(pp2, s̃k,mi), adds mi to
the set Q and returns σi to A.

3. Finally, A submits a message-signature pair (m∗, σ∗). Then, challenger C
invokes b← Verify(pp2, ṽk,m

∗, σ∗). The experiment outputs 1 ifm∗ /∈ Q∧b =
1 and 0 otherwise.

Lemma 2. |Pr[S1]− Pr[S2]| ≤ ε.

Proof. The only difference between Game 1 and Game 2 is the way of generat-

ing the signing key s̃k (not fuzzy). In Game 1, s̃k is generated by (P, s̃k) ←
Gen(pp1, sk), while in Game 2, s̃k is uniformly chosen from S̃K.

By the security of the underlying (SK,m, S̃K, t, ε)-fuzzy extractor FE, if SK
is a distribution over SK with H∞(SK) ≥ m, then

|Pr[A(P, s̃k)⇒ 1]− Pr[A(P,U)⇒ 1]| ≤ ε,

13



where (P, s̃k)← Gen(pp1, sk), sk ← SK and U ←$ S̃K. Therefore, we have

|Pr[S1]− Pr[S2]| ≤ ε.

ut

Lemma 3. Pr[S2] ≤ AdvEUF-CMA
SIG (k).

Proof. We will reduce the EUF-CMA security of the underlying signature scheme
SIG to the altered game as described in Game 2. To this end, we assume a PPT
adversary A winning Game 2 and show how to construct a PPT adversary B
attacking the underlying EUF-CMA secure signature SIG.

On receiving pp2 and ṽk from its own challenger, adversary B invokes pp1 ←
Init(k), samples sk ← SK, invokes (P, s̃k) ← Gen(pp1, sk), sets pp ← (pp1, pp2)

and vk ← (ṽk, P ). Finally, B returns pp and vk to A.
Upon receiving the signing oracle queries mi ∈ M and a function fi ∈ Φ

from A, adversary B answers A’s query as follows:

1. B sends mi to its own challenger.
2. Upon receiving σi from its own challenger, B returns σi to A.

Finally, A submits a message-signature pair (m∗, σ∗) to B. B submits (m∗, σ∗)
to its own challenger and returns what its challenger returns.

Note that B simulates Game 2 perfectly. If A wins in Game 2, then B wins in
the EUF-CMA game. By the security of the underlying EUF-CMA secure signature
scheme SIG, we have

Pr[S2] = AdvEUF-CMA
SIG,B (k) ≤ AdvEUF-CMA

SIG (k).

ut

From lemma 1, 2 and 3, we have

Advm-EUF-CMA
SIGF

(k) ≤ AdvEUF-CMA
SIG (k) + ε,

and Theorem 2 follows. �

5 Instantiation

Let us recall the fuzzy extractor in [6] which uses a (W,m, m̃, t)-secure sketch
(SS,Rec) and an average-case (W, m̃,R, ε)-strong extractor Ext with seed set I
as building blocks. The construction is as follows.

– Init(k): i←$ I, pp = i.
– Gen(pp, w): Compute s = SS(w), set P = s, R = Ext(w, i). Output (P,R).
– Rep(pp, w′, P ): Recover w = Rec(w′, s) and output R = Ext(w, i).

It was shown by Dodis et.al. [6] the above construction is an (W,m,R, t, ε)-fuzzy
extractor.

14



5.1 First Instantiation

Our first concrete instantiation of a fuzzy signature scheme is based on the

Waters signature scheme [15], and thus we review it here. We consider the version

where the setup and the key generation for each user are separated so that the

scheme fits our syntax. Let l = l(k) be a positive polynomial, and let BGGen

be a bilinear group generator. The Waters signature scheme SIGWat is shown in

Figure 3, which is EUF-CMA secure if the CDH assumption holds with respect

to BGGen.

SetupWat(k):

BG := (p,G,GT , g, e)← BGGen(1k)

h, u′, u1, · · · , ul ←$ G
pp← (BG, h, u′, (ui)i∈[l])
Return pp

KeyGenWat(pp):

sk ←$ Zp
vk ← gsk

Return (vk, sk)

SignWat(pp, sk,m):

Parse m as (m1‖ · · · ‖ml) ∈ {0, 1}l

r ←$ Zp
σ1 ← hsk · (u′ ·

∏
i∈[l] u

mi
i )r , σ2 ← gr

Return σ ← (σ1, σ2)

VerifyWat(pp, vk,m, σ):

(σ1, σ2)← σ

Parse m as (m1‖ · · · ‖ml) ∈ {0, 1}l

If e(σ2, u
′ ·

∏
i∈[l] u

mi
i ) · e(vk, h) = e(σ1, g)

Then return 1 else return 0

Fig. 3. The Waters signature scheme SIGWat

Theorem 3. [15] The signature scheme is (t, q, ε) existentially unforgeable as-
suming the decisional (t, ε

16(n+1)q ) BDH assumption holds, where λ = 1
8(n+1)q .

Obviously, the signature scheme SIGWat in Figure 3 has the simple key gen-
eration process property in which vk = gsk.

Note that the secret key space of Waters signature scheme is Zp. We want to
construct a fuzzy extractor with extracted string space Zp. Let Ext be a universal
hash function, i.e., Ext(·, i) := Hi(·) : Zlp → Zp, 3 where i = (i1, · · · , il) ∈ Zlp,
x = (x0, x1, · · · , xl) ∈ Zl+1

p , and

Ext(x, i) = Hi(x) = x0 + i1x1 + · · ·+ ilxl, (1)

and H is a family of universal hash functions according to [12]. If we instantiate
the secure sketch by the syndrome-based secure sketch introduced in Sect. 2.3
and extractor by Ext(x, i)(Eq. 1), then we get a fuzzy extractor FE1. And the
extracted string by FE1 is uniformly distributed over Zp. Note that the secret
key space of Waters signature SIGWat is Zp.

By instantiating the signature SIG in Figure 2 with Waters signature SIGWat,
the fuzzy extractor FE in Figure 2 with the above fuzzy extractor FE1, we get

3 One can always translate a binary string to an element in Zlp for a proper l.
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a fuzzy signature scheme which is m-EUF-CMA secure under the computational
Diffie-Hellman (CDH) assumption in bilinear groups in the standard model (See
Fig. 4).

SetupF1(k):

i←$ Zlp, pp1 ← i

BG := (p,G,GT , g, e)← BGGen(1k)

h, u′, u1, · · · , ul ←$ G
pp2 ← (BG, h, u′, (ui)i∈[l])
pp← (pp1, pp2)

Return pp

KeyGenF1(pp, sk):

(pp1, pp2)← pp

s← SS(sk), P ← s

s̃k ← Ext(sk, i)

ṽk ← gs̃k

vk ← (ṽk, P )

Return vk.

SignF1(pp, vk, sk
′,m):

(pp1, pp2)← pp, (ṽk, P )← vk

s̃k′ ← Ext(Rec(sk′, P ), i)

Parse m as (m1‖ · · · ‖ml) ∈ {0, 1}l

r ←$ Zp
σ1 ← hs̃k

′
· (u′ ·

∏
i∈[l] u

mi
i )r , σ2 ← gr

Return σ ← (σ1, σ2)

VerifyF1(pp, vk,m, σ):

(pp1, pp2)← pp

(ṽk, P )← vk

(σ1, σ2)← σ

Parse m as (m1‖ · · · ‖ml) ∈ {0, 1}l

If e(σ2, u
′ ·

∏
i∈[l] u

mi
i ) · e(ṽk, h) = e(σ1, g)

Then return 1 else return 0

Fig. 4. Our first instantiation SIGF1

Corollary 1. The construction in Figure 4 is an m-EUF-CMA secure fuzzy sig-
nature under the computational Diffie-Hellman (CDH) assumption in bilinear
groups in the standard model.

5.2 Second Instantiation

Our second concrete instantiation of a fuzzy signature scheme is based on the
Lattice-based Signatures [8], and thus we review it here. Let Dmθ be the m-
dimensional discrete Gaussian distribution for some standard deviation θ. The
lattice-based signature scheme SIGLat based on SIS is shown in Figure 5, which
is secure in the random oracle model based on the worst-case hardness of the
Õ(n1.5)-SIVP problem in general lattices.

Theorem 4. [8] If there is a polynomial-time forger, who makes at most s
queries to the signing oracle and h queries to the random oracle H, who breaks the
signature (with proper parameters) with probability δ, then there is a polynomial-
time algorithm who can solve the l2-SISq,u,v,β problem for β = (4θ + 2dk)

√
v =

Õ(du) with probability ≈ δ2

2(h+s) .
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SetupLat(k):

Random Oracle: H : {0, 1}∗ → {−1, 0, 1}k

A←$ Zu×vq

Return pp← (H,A)

KeyGenLat(pp):

sk←$ {−d, 0, d}v×k

vk← A · sk
Return (vk, sk)

SignLat(pp, sk,m):

y← Dvθ
c← H(Ay,m)

z← sk · c + y

Return σ ← (c, z)

VerifyLat(pp,vk,m, σ):

(c, z)← σ

If ‖z‖ ≤ ηθ
√
v

∧ z = H(Az− vk · c,m)

Return 1, Else, Return 0

Fig. 5. Lattice-based Signatures SIGLat

Obviously, the signature scheme SIGLat in Figure 5 has the simple key gener-
ation process property in which vk = A · sk.

Note that the secret key space of the signature scheme SIGLat is {−d, 0, d}v×k.
We want to construct a fuzzy extractor with extracted string space {−d, 0, d}v×k.
Lyubashevsky [8] gave parameters choices for the lattice-based signature scheme
in which d can be equal to 1 or 31. Here we consider the case d = 1.

For x ∈ Zl3, i ∈ Zn×l3 , define

Hi(x) := ix,

then H = {Hi : Zl3 → Zn3 |i ∈ Zn×l3 } is a family of universal hash functions. Let
n = v × k, we can readily interpret a vector in Zn3 as a matrix in Zv×k3 . Given
y ∈ Zv×k3 , we can get a matrix y′ ∈ {−1, 0, 1}v×k by subtracting 2 from each
component of the matrix y. Define the above two operation as f1 : Zn3 → Zv×k3

and f2 : Zv×k3 → {−1, 0, 1}v×k separately. We can easily get a family of universal
hash functions

H′ = {f2 ◦ f1 ◦ Hi : Zl3 → {−1, 0, 1}v×k|i ∈ Zn×l3 }. (2)

If we instantiate the secure sketch by the syndrome-based secure sketch in-
troduced in Sect. 2.3 and extractor by the universal hash function H′ (Eq. 2),
then we get a fuzzy extractor FE2. The extracted string by FE2 is uniformly
distributed over {−1, 0, 1}v×k.

By instantiating the signature SIG in Figure 2 with SIGLat (with proper pa-
rameters), the fuzzy extractor FE in Figure 2 with above fuzzy extractor FE2, we
get a fuzzy signature scheme which is m-EUF-CMA secure in the random oracle
model based on the worst-case hardness of the Õ(n1.5)-SIVP problem in general
lattices (See Fig. 6).
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SetupF2(k):

i←$ Zn×l3 , pp1 ← i

Random Oracle: H : {0, 1}∗ → {−1, 0, 1}k

A←$ Zu×vq , pp2 ← (H,A)

Return pp← (pp1, pp2)

KeyGenF2(pp, sk):

(pp1, pp2)← pp

s← SS(sk), P ← s

s̃k← Ext(sk, i), ṽk← A · s̃k
Return vk ← (ṽk, P )

SignF2(pp, sk
′,m):

(pp1, pp2)← pp

(ṽk, P )← vk

s̃k′ ← Ext(Rec(sk′, P ), i)

y← Dvθ , c← H(Ay,m)

c← s̃k′ · c + y

Return σ ← (c, z)

VerifyF2(pp, vk,m, σ):

(c, z)← σ

(ṽk, P )← vk

If ‖z‖ ≤ ηθ
√
v

∧ z = H(Az− ṽk · c,m)

Return 1, Else, Return 0

Fig. 6. Our second instantiation SIGF2

Corollary 2. The construction in Figure 6 is an m-EUF-CMA secure fuzzy sig-
nature based on the worst-case hardness of the Õ(n1.5)-SIVP problem in general
lattices in the random oracle model.
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