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Abstract. Impossible differential cryptanalysis is a powerful cryptanal-
ysis technique of block ciphers. Length of impossible differentials is im-
portant for the security evaluation of a block cipher against impossible
differential cryptanalysis. Many previous studies on finding impossible
differentials of AES assumed that round keys are independent and uni-
formly random. There are few results on security evaluation of AES in
the master-key setting. In ASIACRYPT 2020, Hu et al. redefined impos-
sible differential with the key schedule considered, and showed that there
exists no one-byte active input and one-byte active output impossible d-
ifferential for 5-round AES-128 even considering the relations of 3-round
keys. In this paper, we prove theoretically that even though the relations
of all round keys are considered, there do not exist three kinds of trun-
cated impossible differentials for 5-round AES: (1) the input truncated
differences are nonzero only in any diagonal and the output truncated
differences are nonzero only in any inverse diagonal; (2) the input trun-
cated differences are nonzero only in any two diagonals and the output
truncated differences are nonzero only in any inverse diagonal; (3) the
input truncated differences are nonzero only in any diagonal and the out-
put truncated differences are nonzero only in any two inverse diagonals.
Furthermore, for any given truncated differentials of these three kinds,
the lower bounds of the number of master keys such that the truncated
differentials are possible for 5-round AES-128 are presented.

Keywords: AES · Truncated impossible differential · Provable security
· Master-key setting

1 Introduction

Impossible differential cryptanalysis [4,20] is a powerful cryptanalysis technique
of block ciphers. The differentials with probability 0 are used to distinguish
round-reduced block ciphers and discard the wrong keys in the key recovery
attack. Truncated impossible differentials are usually used in the impossible
differential cryptanalysis of block ciphers, such as AES [1,5,6,9,13,21,28], Cryp-
ton [6, 9], Camellia [6, 7], SIMON [7], CLEFIA [7, 25] and XTEA [8]. AES is
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the most widely used block cipher and its security has been studied worldwide
in the last twenty years. Many cryptanalysis techniques have been applied to
distinguish or attack the round-reduced variants of AES, such as integral [12],
impossible differential [6], zero-correlation linear [17,23], subspace trail [15], mix-
ture differential [2,14], multiple-of-8 [16], meet-in-the-middle [10], yoyo [22], ex-
change [3] and boomerang [11]. The first impossible differential distinguisher on
4-round AES was proposed to attack 5-round AES in [5]. Then based on 4-round
impossible differential distinguishers, many impossible differential attacks on 6
rounds and 7 rounds of AES were proposed [1,6,9,21,28]. As we know, the best
key recovery attacks on AES-128 in the secret-key model cover 7 rounds. In EU-
ROCRYPT 2021, Gaëtan et al. [13] gave new representations of the AES key
schedule and improved the impossible differential attack on 7-round AES-128.
The length of truncated impossible differentials used in these known attacks is
4 rounds. To some extent, the longer truncated impossible differentials can be
found, the more rounds can be attacked. Whether there exist 5-round truncated
impossible differentials is one of important problems for the security evaluation
of AES.

In [24], Sun et al. proved that there exists no 5-round impossible differential
for the AES structure, where the details of S-boxes are not considered. Under
the assumption that round keys are independent and uniformly random, Wang
et al. showed that there exists no 5-round truncated impossible differential even
considering the details of the AES S-box [26], and further proved that any con-
crete differential is possible for 5-round AES [27]. These results are not true for
the real AES, because the round keys are dependent under the key schedule.
In ASIACRYPT 2020, Hu et al. [18] redefined impossible differential with the
key schedule considered, and proposed a SAT-based automatic search tool for
impossible differentials. With the help of the automatic search tool, it was shown
that there exists no one-byte active input and one-byte active output impossi-
ble differential for 5-round AES even taking the relations of the middle 3-round
keys into account. It is the first result on the provable security evaluation of AES
against impossible differential cryptanalysis with the key schedule considered.

In this paper, we study three kinds of truncated differentials for 5-round AES
in the master-key setting.

-Set 1: the input truncated differences are nonzero only in any diagonal and
the output truncated differences are nonzero only in any inverse diagonal.

-Set 2: the input truncated differences are nonzero only in any two diagonals
and the output truncated differences are nonzero only in any inverse diagonal.

-Set 3: the input truncated differences are nonzero only in any diagonal and
the output truncated differences are nonzero only in any two inverse diagonals.

By investigating the properties of the key schedule, we prove theoretically that
there do not exist the three kinds of truncated impossible differentials for 5-round
AES even considering the relations of all round keys. Furthermore, for any given
truncated differentials in the three sets, the lower bounds of the number of master
keys such that the truncated differentials are possible for 5-round AES-128 are
presented.
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This paper is organized as follows. In Section 2, the description of AES and
the definitions related to truncated differential are recalled. In Section 3, three
kinds of truncated differentials for 5-round AES in the master-key setting are
studied. Section 4 concludes the paper.

2 Preliminaries

2.1 Brief description of AES

AES is a Substitution-Permutation Network cipher with 128-bit block. The 128-
bit state can be described as a 4 × 4 matrix over the finite field F28 , and the
order of bytes in the state matrix is showed in Fig. 1. The number of rounds Nr

depends on the length of master key, that is, Nr = 10 for 128-bit key, Nr = 12
for 192-bit key and Nr = 14 for 256-bit key. The round transformation of AES
consists of the following four operations.

1. SubBytes(SB) : applies the same 8-bit S-box to 16 bytes of the state par-
allelly. The S-box is composed of the multiplicative inverse transformation
over F28 and an affine function over F2, i.e., S(x) = L(x−1) + b, x ∈ F28 .

2. ShiftRows(SR) : shifts the i-th row by i bytes to the left circularly for i =
0, 1, 2, 3.

3. MixColumns(MC) : multiplies each column by the following MDS matrix
over F28 . 

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


4. AddRoundKey(AK) : XORs the state with a 128-bit round key, which is

generated from a master key by the key schedule.

An additional AK is applied before the first round and the MC is omitted in
the last round. Let Kr denote the r-th round key, and AKr denote the Ad-
dRoundKey operation with Kr. The r-th round transformation can be written
as AKr ◦ MC ◦ SR ◦ SB. When interchanging the order of MC and AK, we
can get the equivalent round transformation MC ◦AK ′

r ◦ SR ◦ SB, where AK ′
r

denotes XORing the equivalent round key K ′
r = MC−1(Kr). Denote by Kr,j

the j-th byte of Kr. When considering several bytes j1, j2, ..., jn of Kr simulta-
neously, we denote by Kr,{j1,j2,...,jn}. In this paper, we focus on AES-128. The
key schedule of AES-128 can be described as follows.

Kr,0 = Kr−1,0 + S(Kr−1,13) + Cr,

Kr,1 = Kr−1,1 + S(Kr−1,14),

Kr,2 = Kr−1,2 + S(Kr−1,15),

Kr,3 = Kr−1,3 + S(Kr−1,12),

Kr,j = Kr−1,j +Kr,j−4, 4 ≤ j ≤ 15,

where K0 is the master key, and Cr is the round constant, 1 ≤ r ≤ 10.
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Fig. 1. The order of bytes in the state matrix

2.2 Definitions

Definition 1. Given a vectorial Boolean function f : Fn
2 → Fn

2 , for an input d-
ifference ∆X ∈ Fn

2 and an output difference ∆Y ∈ Fn
2 , the differential probability

is defined as

DP (∆X
f→ ∆Y ) =

1

2n
# {X ∈ Fn

2 | f(X) + f(X +∆X) = ∆Y } .

Definition 2. Given a keyed function fK : Fn
2×K → Fn

2 , for an input difference
∆X ∈ Fn

2 and an output difference ∆Y ∈ Fn
2 , the expected differential probability

over all keys is defined as

EDP (∆X
fK→ ∆Y ) =

1

#K

∑
k∈K

DP (∆X
fk→ ∆Y ).

If EDP (∆X
fK→ ∆Y ) is too small to distinguish fK from random permuta-

tions for any differential ∆X → ∆Y , then fK is provably secure against differ-

ential cryptanalysis. If EDP (∆X
fK→ ∆Y ) = 0, then ∆X → ∆Y is called an

impossible differential of fK . In the following we recall the definitions related to
truncated differential introduced in [19].

Definition 3. For x ∈ F2m , define the function χ as

χ(x) =

{
0, if x = 0;

1, if x ̸= 0.

For X = (x1, x2, . . . , xn) ∈ Fn
2m , define χ(X) = (χ(x1), χ(x2), . . . , χ(xn)).

Definition 4. Given a function f : Fn
2m → Fn

2m , for an input truncated dif-
ference ∆X ∈ Fn

2 and an output truncated difference ∆Y ∈ Fn
2 , the truncated

differential probability is defined as

DP (∆X
f→ ∆Y ) =

∑
∆X,∆Y ∈Fn

2m
,

χ(∆X)=∆X,χ(∆Y )=∆Y

DP (∆X
f→ ∆Y )

#
{
∆X ∈ Fn

2m | χ(∆X) = ∆X
} .
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Definition 5. Given a keyed function fK : Fn
2m × K → Fn

2m , for an input
truncated difference ∆X ∈ Fn

2 and an output truncated difference ∆Y ∈ Fn
2 , the

expected truncated differential probability over all keys is defined as

EDP (∆X
fK→ ∆Y ) =

1

#K

∑
k∈K

DP (∆X
fk→ ∆Y ).

If EDP (∆X
fK→ ∆Y ) = 0, then ∆X → ∆Y is called a truncated impossible

differential of fK . To prove that truncated differential ∆X → ∆Y is possible for
fK , we need to find at least a key k ∈ K and a differential ∆X → ∆Y such that

χ(∆X) = ∆X, χ(∆Y ) = ∆Y , and DP (∆X
fk→ ∆Y ) > 0.

3 Main results

Let ∆X,∆W ∈ F4×4
2 be the input and output truncated differences respectively.

In this section, we reveal some properties of the key schedule of AES-128, and
prove theoretically that in the master-key setting there do not exist the following
three kinds of truncated impossible differentials for 5-round AES.

-Set 1: ∆X is nonzero only in any diagonal and ∆W is nonzero only in any
inverse diagonal;

-Set 2: ∆X is nonzero only in any two diagonals and ∆W is nonzero only
in any inverse diagonal;

-Set 3: ∆X is nonzero only in any diagonal and ∆W is nonzero only in any
two inverse diagonals.
We note that the input (output) truncated differences being nonzero in some
diagonals (inverse diagonals) means that there exists at least a nonzero bit in
each corresponding diagonal (inverse diagonal).

Five rounds of AES can be written as

AK5 ◦ SR ◦ SB ◦AK4 ◦G ◦AK ′
1 ◦ SR ◦ SB ◦AK0,

where G = MC ◦SR ◦SB ◦AK3 ◦MC ◦SR ◦SB ◦MC ◦AK ′
2 ◦SR ◦SB ◦MC.

To prove the results, it is sufficient to prove that the following three kinds of
truncated differentials ∆X ′ → ∆W ′ are all possible for G even considering the
relation of K ′

2 and K3.

1. ∆X ′ is nonzero only in any column and ∆W ′ is nonzero only in any column;
2. ∆X ′ is nonzero only in any two columns and ∆W ′ is nonzero only in any

column;
3. ∆X ′ is nonzero only in any column and ∆W ′ is nonzero only in any two

columns.

Since SB and SR are applied on each byte independently, we can interchange
their order in the last SR ◦ SB of G. Then decompose G as

G = f ◦ (SR ◦AK3) ◦ g ◦ (AK ′
2 ◦ SR) ◦ h,

where h = SB ◦ MC, g = MC ◦ SR ◦ SB ◦ MC, and f = MC ◦ SB are
key-independent.
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Lemma 1. For any nonzero truncated difference ∆y ∈ F4
2, there exists differ-

ence ∆x ∈ (F∗
28)

4 such that χ(MC(∆x)) = ∆y, where F∗
28 denotes the multi-

plicative group of nonzero elements of F28 .

Proof. Let c be the Hamming weight of ∆y. If c = 1, then for any ∆y with
χ(∆y) = ∆y, we have MC−1(∆y) ∈ (F∗

28)
4 since the MC matrix is MDS. If

2 ≤ c ≤ 4, then the number of∆y such that χ(∆y) = ∆y is 255c. But the number
of ∆y such that χ(∆y) = ∆y and MC−1(∆y) /∈ (F∗

28)
4 is at most 4 · (255)c−1.

Therefore, there exists difference ∆x ∈ (F∗
28)

4 such that χ(MC(∆x)) = ∆y. ⊓⊔

Lemma 2. (See [27].) If SB ◦ MC is regarded as a function on F4
28 , then for

any nonzero input truncated difference ∆x ∈ F4
2 and any output difference ∆y ∈

(F∗
28)

4, there exists input difference ∆x such that χ(∆x) = ∆x and

SB ◦MC(x) + SB ◦MC(x+∆x) = ∆y

for some x ∈ F4
28 .

Lemma 3. Suppose the master keys of AES-128 are independent and uniformly
random. Then any inverse diagonal of K ′

r and any diagonal of Kr+1 are inde-
pendent, and for any given values of the eight bytes there are 264 master keys
under the key schedule of AES-128, 0 ≤ r ≤ 9.

Proof. By the assumption, the 16 bytes of Kr are independent and uniformly
random. Let (p, q, s, t) ∈ {(0, 7, 10, 13), (1, 4, 11, 14), (2, 5, 8, 15), (3, 6, 9, 12)} be
any inverse diagonal. Since K ′

r = MC−1(Kr), four bytes in the p-th inverse
diagonal of K ′

r can be represented by the bytes of Kr as follows.

K ′
r,p = a0Kr,0 + a1Kr,1 + a2Kr,2 + a3Kr,3,

K ′
r,q = a4Kr,4 + a5Kr,5 + a6Kr,6 + a7Kr,7,

K ′
r,s = a8Kr,8 + a9Kr,9 + a10Kr,10 + a11Kr,11,

K ′
r,t = a12Kr,12 + a13Kr,13 + a14Kr,14 + a15Kr,15,

(1)

where aj ∈ {0B, 0D, 0E, 09} is a constant dependent on (p, q, s, t), 0 ≤ j ≤ 15.
From the key schedule, the four diagonals of Kr+1 can be represented by the
bytes of Kr as the following four systems of equations respectively.

Kr+1,0 = Kr,0 + S(Kr,13) + Cr+1,

Kr+1,5 = Kr,5 +Kr,1 + S(Kr,14),

Kr+1,10 = Kr,10 +Kr,6 +Kr,2 + S(Kr,15),

Kr+1,15 = Kr,15 +Kr,11 +Kr,7 +Kr,3 + S(Kr,12).

(2)

Kr+1,3 = Kr,3 + S(Kr,12),

Kr+1,4 = Kr,4 +Kr,0 + S(Kr,13) + Cr+1,

Kr+1,9 = Kr,9 +Kr,5 +Kr,1 + S(Kr,14),

Kr+1,14 = Kr,14 +Kr,10 +Kr,6 +Kr,2 + S(Kr,15).

(3)
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Kr+1,2 = Kr,2 + S(Kr,15),

Kr+1,7 = Kr,7 +Kr,3 + S(Kr,12),

Kr+1,8 = Kr,8 +Kr,4 +Kr,0 + S(Kr,13) + Cr+1,

Kr+1,13 = Kr,13 +Kr,9 +Kr,5 +Kr,1 + S(Kr,14).

(4)

Kr+1,1 = Kr,1 + S(Kr,14),

Kr+1,6 = Kr,6 +Kr,2 + S(Kr,15),

Kr+1,11 = Kr,11 +Kr,7 +Kr,3 + S(Kr,12),

Kr+1,12 = Kr,12 +Kr,8 +Kr,4 +Kr,0 + S(Kr,13) + Cr+1.

(5)

We claim that for any given values of K ′
r,{p,q,s,t} and any diagonal of Kr+1,

the number of solutions of Kr is 264. For Kr+1,{0,5,10,15}, we can take the eight
bytes Kr,{0,1,4,6,9,11,14,15} as free variables in the system of (1) and (2). When the
free variables are determined the other eight bytes of Kr have unique solution.
Similarly, for Kr+1,{3,4,9,14}, we also take Kr,{0,1,4,6,9,11,14,15} as free variables
in the system of (1) and (3). For Kr+1,{2,7,8,13}, we take Kr,{0,2,4,5,9,11,12,13}
as free variables in the system of (1) and (4). For Kr+1,{1,6,11,12}, we take
Kr,{0,2,4,5,9,11,14,15} as free variables in the system of (1) and (5). SinceK ′

r,{p,q,s,t}
and any diagonal of Kr+1 can take arbitrary values, they are independent. Fur-
thermore, for their any given values there are 264 master keys under the key
schedule of AES-128. ⊓⊔

Theorem 1. For any input truncated difference ∆X with one diagonal nonzero
and any output truncated difference ∆W with one inverse diagonal nonzero,
there are at least 266 master keys such that ∆X → ∆W is possible for 5-round
AES-128.

Proof. It is sufficient to prove that for any input truncated difference ∆X ′ with
one column nonzero and any output truncated difference ∆W ′ with one column
nonzero, there are at least 266 master keys such that

DP (∆X ′ G−→ ∆W ′) > 0.

Let the i-th column of∆X ′ and the j-th column of∆W ′ be nonzero, 0 ≤ i, j ≤ 3.
From the definition of truncated differential probability, we just need to find a
differential ∆X ′ → ∆W ′ such that χ(∆X ′) = ∆X ′, χ(∆W ′) = ∆W ′, and

DP (∆X ′ G−→ ∆W ′) > 0.

The propagation of the differential is shown in Fig. 2. We recall

G = f ◦ (SR ◦AK3) ◦ g ◦ (AK ′
2 ◦ SR) ◦ h,

where h = SB ◦MC, g = MC ◦ SR ◦ SB ◦MC, and f = MC ◦ SB.
From Lemma 1, there exist ∆Z with only four bytes in the j-th column

nonzero and ∆W ′ with χ(∆W ′) = ∆W ′ such that f(Z) + f(Z +∆Z) = ∆W ′,
where Z ∈ F4×4

28 and the bytes except the j-th column of Z can take arbitrary
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Fig. 2. The propagation of the differential in Set 1

values. Let ∆Z∗ = SR−1(∆Z), then SR−1 ◦ MC−1(∆Z∗) ∈ (F∗
28)

4×4. From
Lemma 2, there exists input difference ∆Y ∗ with only four bytes in the i-th
inverse diagonal nonzero such that g(Y ∗) + g(Y ∗ +∆Y ∗) = ∆Z∗ for some Y ∗ ∈
F4×4
28 . Let∆Y = SR−1(∆Y ∗). From Lemma 2 again, there exists input difference

∆X ′ such that χ(∆X ′) = ∆X ′ and h(X ′)+h(X ′+∆X ′) = ∆Y, whereX ′ ∈ F4×4
28

and the bytes except the i-th column of X ′ can take arbitrary values. Denote
Y = h(X ′), then the bytes except the i-th column of Y can take arbitrary values.

Taking K ′
2 = SR(Y )+Y ∗ or K ′

2 = SR(Y )+Y ∗ +∆Y ∗, the output states of
SR◦h and the input states of g are connected. Because the bytes except the i-th
column of Y can take arbitrary values, the bytes except the i-th inverse diagonal
ofK ′

2 can take arbitrary values. Denote Z∗ = g(Y ∗). TakingK3 = Z∗+SR−1(Z)
or K3 = Z∗ + SR−1(Z) +∆Z∗, the output states of g and the input states of
f ◦ SR are connected. Since the bytes except the j-th column of Z can take
arbitrary values, the bytes except the j-th diagonal of K3 can take arbitrary
values.

The i-th inverse diagonal of K ′
2 and the j-th diagonal of K3 have at least

two possible values respectively. From Lemma 3, for any given values of these
eight bytes, there are 264 master keys under the key schedule of AES-128. Thus
there are at least 266 master keys such that ∆X ′ → ∆W ′ is possible for G. This
completes the proof. ⊓⊔

Lemma 4. Suppose the master keys of AES-128 are independent and uniformly
random. Then any two inverse diagonals of K ′

r and any diagonal of Kr+1 are
independent, and for any given values of the twelve bytes there are 232 master
keys under the key schedule of AES-128, 0 ≤ r ≤ 9.
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Proof. The bytes of Kr are independent and uniformly random. Let (p, q, s, t),
(p′, q′, s′, t′)∈ {(0, 7, 10, 13), (1, 4, 11, 14), (2, 5, 8, 15), (3, 6, 9, 12)} are any two in-
verse diagonals. Since K ′

r = MC−1(Kr), K
′
r,{p,p′,q,q′,s,s′,t,t′} can be represented

by the bytes of Kr as follows.

K ′
r,p = a0Kr,0 + a1Kr,1 + a2Kr,2 + a3Kr,3,

K ′
r,p′ = a′0Kr,0 + a′1Kr,1 + a′2Kr,2 + a′3Kr,3,

K ′
r,q = a4Kr,4 + a5Kr,5 + a6Kr,6 + a7Kr,7,

K ′
r,q′ = a′4Kr,4 + a′5Kr,5 + a′6Kr,6 + a′7Kr,7,

K ′
r,s = a8Kr,8 + a9Kr,9 + a10Kr,10 + a11Kr,11,

K ′
r,s′ = a′8Kr,8 + a′9Kr,9 + a′10Kr,10 + a′11Kr,11,

K ′
r,t = a12Kr,12 + a13Kr,13 + a14Kr,14 + a15Kr,15,

K ′
r,t′ = a′12Kr,12 + a′13Kr,13 + a′14Kr,14 + a′15Kr,15.

(6)

where aj , a
′
j ∈ {0B, 0D, 0E, 09} are constants dependent respectively on (p, q, s, t)

and (p′, q′, s′, t′), 0 ≤ j ≤ 15. Note that four diagonals of Kr+1 are represented
by the bytes of Kr in (2),(3),(4) and (5). We combine (6) with (2),(3),(4) and (5)
respectively, and Kr,{4,5,12,13} can be taken as free variables in the four combined
systems of equations. When the free variables are determined the other twelve
bytes ofKr have unique solution. Thus, for any given values ofK ′

r,{p,p′,q,q′,s,s′,t,t′}
and any diagonal of Kr+1, the number of solutions of Kr is 232. Since the twelve
bytes can take arbitrary values, they are independent. Furthermore, for any giv-
en values of the twelve bytes there are 232 master keys under the key schedule
of AES-128. ⊓⊔

Theorem 2. For any input truncated difference ∆X with two diagonals nonzero
and any output truncated difference ∆W with one inverse diagonal nonzero,
there are at least 234 master keys such that ∆X → ∆W is possible for 5-round
AES-128.

Proof. It is sufficient to prove that for any input truncated difference ∆X ′ with
two columns nonzero and any output truncated difference ∆W ′ with one column
nonzero, there are at least 234 master keys such that

DP (∆X ′ G−→ ∆W ′) > 0.

Let the i1-th and i2-th columns of ∆X ′ and the j-th column of ∆W ′ be nonzero,
i1 ̸= i2, 0 ≤ i1, i2, j ≤ 3. We need to find a differential ∆X ′ → ∆W ′ such that
χ(∆X ′) = ∆X ′, χ(∆W ′) = ∆W ′, and

DP (∆X ′ G−→ ∆W ′) > 0.

The propagation of the differential is shown in Fig. 3. Similar to the proof of
Theorem 1, there exist ∆Z with only four bytes in the j-th column nonzero
and ∆W ′ with χ(∆W ′) = ∆W ′ such that f(Z) + f(Z + ∆Z) = ∆W ′, where
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Fig. 3. The propagation of the differential in Set 2

Z ∈ F4×4
28 and the bytes except the j-th column of Z can take arbitrary values.

Let ∆Z∗ = SR−1(∆Z), and then SR−1◦MC−1(∆Z∗) ∈ (F∗
28)

4×4. From Lemma
2, there exists ∆Y ∗ with only eight bytes in the i1-th and i2-th inverse diagonals
nonzero such that g(Y ∗) + g(Y ∗ + ∆Y ∗) = ∆Z∗ for some Y ∗ ∈ F4×4

28 . Let
∆Y = SR−1(∆Y ∗). By Lemma 2 again, there exists input difference ∆X ′ such
that χ(∆X ′) = ∆X ′ and g(X ′) + g(X ′ + ∆X ′) = ∆Y , where X ′ ∈ F4×4

28 and
the bytes except the i1-th and i2-th columns of X ′ can take arbitrary values.
Denote Y = h(X ′), the bytes except the i1-th and i2-th columns of Y can take
arbitrary values.

TakingK ′
2 = SR(Y )+Y ∗ orK ′

2 = SR(Y )+Y ∗+∆Y ∗, then the output states
of SR ◦ h and the input states of g are connected. The bytes except the i1-th
and i2-th inverse diagonals of K ′

2 can take arbitrary values. Denote Z∗ = g(Y ∗).
Taking K3 = Z∗ + SR−1(Z) or K3 = Z∗ + SR−1(Z) + ∆Z∗, then the output
states of g and the input states of f ◦ SR are connected. The bytes except the
j-th diagonal of K3 can take arbitrary values. From Lemma 4, for any given
values of the i1-th and i2-th inverse diagonals of K ′

2 and the j-th diagonal of K3,
there are 232 master keys under the key schedule of AES-128. Thus there are at
least 234 master keys such that ∆X ′ → ∆W ′ is possible for G. ⊓⊔

Lemma 5. Suppose the master keys of AES-128 are independent and uniformly
random. Then any inverse diagonal of K ′

r and any two diagonals of Kr+1 are
independent, and for any given values of the twelve bytes there are 232 master
keys under the key schedule of AES-128, 0 ≤ r ≤ 9.
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Proof. By the assumption, the 16 bytes of Kr are independent and uniformly
random. Let (p, q, s, t) ∈ {(0, 7, 10, 13), (1, 4, 11, 14), (2, 5, 8, 15), (3, 6, 9, 12)} be
any inverse diagonal. Then K ′

r,{p,q,s,t} can be represented by the bytes of Kr in

(1). Note that four diagonals of Kr+1 are represented by the bytes of Kr in (2),
(3), (4) and (5) respectively. We combine (1) with any two of (2), (3), (4) and
(5) to form 6 systems of equations. For each system, there are four bytes of Kr

that can be taken as free variables. That is, Kr,{5,6,12,13} are free variables in
the system of (1), (2) and (3). Kr,{7,13,14,15} are free variables in the system of
(1), (2) and (4). Kr,{2,7,12,13} are free variables in the system of (1), (2) and (5).
Kr,{1,5,12,14} are free variables in the system of (1), (3) and (4). Kr,{0,12,13,14}
are free variables in the system of (1), (3) and (5). Kr,{0,4,13,14} are free variables
in the system of (1), (4) and (5). When the free variables are determined the
other bytes of Kr have unique solution in each combined system of equations.
Since K ′

r,{p,q,s,t} and any two diagonals of Kr+1 can take arbitrary values, they

are independent. Furthermore, for their any given values there are 232 master
keys under the key schedule of AES-128. ⊓⊔

Theorem 3. For any input truncated difference ∆X with one diagonal nonzero
and any output truncated difference ∆W with two inverse diagonals nonzero,
there are at least 234 master keys such that ∆X → ∆W is possible for 5-round
AES-128.

Proof. It is sufficient to prove that for any input truncated difference ∆X ′ with
one column nonzero and any output truncated difference ∆W ′ with two columns
nonzero, there are at least 234 master keys such that

DP (∆X ′ G−→ ∆W ′) > 0.

Let the i-th column of ∆X ′ and the j1-th and j2-th columns of ∆W ′ be nonzero,
j1 ̸= j2, 0 ≤ i, j1, j2 ≤ 3. We just need to find a differential ∆X ′ → ∆W ′ such
that χ(∆X ′) = ∆X ′, χ(∆W ′) = ∆W ′, and

DP (∆X ′ G−→ ∆W ′) > 0.

The propagation of the differential is shown in Fig. 4. From Lemma 1, there
exists ∆W ′ such that χ(∆W ′) = ∆W ′ and the eight bytes in the j1-th and
j2-th columns of MC−1(∆W ′) are nonzero. Let f(Z) + f(Z + ∆Z) = ∆W ′,
where Z ∈ F4×4

28 and the bytes except the j1-th and j2-th columns of Z can take
arbitrary values. By the differential distribution of S-box, each byte in the j1-th
and j2-th columns of ∆Z has 127 possible values. Denote ∆Z∗ = SR−1(∆Z),
then each column of ∆Z∗ has two nonzero bytes and each nonzero byte has 127
possible values. That is, the number of ∆Z∗ is 1278. But the number of ∆Z∗

such that MC−1(∆Z∗) /∈ (F∗
28)

4×4 is at most (127 · 4)4. So there exists ∆Z∗

such that MC−1(∆Z∗) ∈ (F∗
28)

4×4, and then SR−1 ◦MC−1(∆Z∗) ∈ (F∗
28)

4×4.
From Lemma 2, there exists input difference ∆Y ∗ with only four bytes in the
i-th inverse diagonal nonzero such that g(Y ∗) + g(Y ∗ +∆Y ∗) = ∆Z∗ for some
Y ∗ ∈ F4×4

28 . Let ∆Y = SR−1(∆Y ∗). From Lemma 2 again, there exists input
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Round 1

Round 2

Round 3

Round 4
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'
SR MC

-1

Round 5
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-1
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-1 AK4

-1
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-1
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-1 
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Fig. 4. The propagation of the differential in Set 3

difference ∆X ′ such that χ(∆X ′) = ∆X ′ and h(X ′) + h(X ′ + ∆X ′) = ∆Y,
where X ′ ∈ F4×4

28 and the bytes except the i-th column of X ′ can take arbitrary
values. Denote Y = h(X ′), then the bytes except the i-th column of Y can take
arbitrary values.

Taking K ′
2 = SR(Y ) + Y ∗ or K ′

2 = SR(Y ) + Y ∗ +∆Y ∗, the output states
of SR ◦ h and the input states of g are connected. Denote Z∗ = g(Y ∗). Taking
K3 = Z∗+SR−1(Z) or K3 = Z∗+SR−1(Z)+∆Z∗, then the output states of g
and the input states of f ◦ SR are connected. The bytes except the i-th inverse
diagonal of K ′

2 as well as the bytes except the j1-th and j2-th diagonals of K3

can take arbitrary values. From Lemma 5, for any given values of the i-th inverse
diagonal of K ′

2 and the j1-th and j2-th diagonals of K3, there are 232 master
keys under the key schedule of AES-128. Thus there are at least 234 master keys
such that ∆X ′ → ∆W ′ is possible for G. ⊓⊔

From the view of provable security, we can get the following theorem. The
result also holds for AES-192 and AES-256 because their master keys have larger
degrees of freedom.

Theorem 4. There do not exist truncated impossible differentials in Set 1, Set
2 and Set 3 for 5-round AES even considering the key schedule. That is, for any
truncated differential ∆X → ∆W in Set 1, Set 2 or Set 3, we have

EDP (∆X
5−roundAES−−−−−−−−−→ ∆W ) > 0.
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4 Conclusion

In this paper, we prove theoretically that there do not exist three kinds of trun-
cated impossible differentials for 5-round AES in the master-key setting. Further-
more, for any given truncated differentials of the three kinds, the lower bounds
of the number of master keys such that the truncated differentials are possible
for 5-round AES-128 are given. The lower bounds could be improved by more
detailed analysis. These results improve the provable security evaluation of the
real AES. It seems difficult to study the differentials in the master-key setting,
because the dependence of round keys affects the propagation of states. Thanks
to the simple algebraic relation of consecutive two-round keys in the key sched-
ule, we prove the independence between the key bytes involved for the three
kinds of truncated differentials. And for any given values of the key bytes in-
volved, the number of master keys under the key schedule of AES-128 are also
presented by analysing the number of solutions of the corresponding systems of
algebraic equations. In the master-key setting, the nonexistence of r-round im-
possible differentials can not lead to the nonexistence of (r+1)-round impossible
differentials. There are still many problems that need to be studied in the future.
For example, it is not clear that whether other kinds of truncated differentials
are impossible for 5-round AES in the master-key setting. When the concrete
differentials are considered, whether they are impossible for round-reduced AES
in the master-key setting.

Acknowledgements. The authors are grateful to the anonymous reviewers
for their helpful comments and suggestions. This work was supported by the
National Cryptography Development Fund of China under grant numbers M-
MJJ20170103 and MMJJ20180204.

References

1. Bahrak, B., Aref, M.R.: Impossible differential attack on seven-round AES-128.
IET Inf. Secur. 2(2), 28-32 (2008).

2. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key recov-
ery attacks on reduced-round AES with practical data and memory complexities.
J. Cryptol. 33(3), 1003-1043 (2020).

3. Bardeh, N.G., Rønjom, S.: The exchange attack: How to distinguish six round-
s of AES with 288.2 chosen plaintexts. In: ASIACRYPT 2019. Lecture Notes in
Computer Science, vol. 11923, pp. 347-370. Springer (2019).

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: EUROCRYPT 1999. Lecture Notes in
Computer Science, vol. 1592, pp. 12-23. Springer (1999).

5. Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijndael. In: The 3rd
AES Conference (2000).

6. Boura, C., Lallemand, V., Naya-Plasencia, M., Suder, V.: Making the impossible
possible. J. Cryptol. 31(1), 101-133 (2018).



14 Xueping Yan et al.

7. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: Applications to CLEFIA, Camellia, LBlock and SIMON. In:
ASIACRYPT 2014. Lecture Notes in Computer Science, vol. 8873, pp. 179-199.
Springer (2014).

8. Chen, J., Wang, M., Preneel, B.: Impossible differential cryptanalysis of the
lightweight block ciphers TEA, XTEA and HIGHT. In: AFRICACRYPT 2012.
Lecture Notes in Computer Science, vol. 7374, pp. 117-137. Springer (2012).

9. Cheon, J.H., Kim, M., Kim, K., Jung-Yeun, L., Kang, S.: Improved impossible
differential cryptanalysis of Rijndael and Crypton. In: ICISC 2001. Lecture Notes
in Computer Science, vol. 2288, pp. 39-49. Springer (2002).

10. Derbez, P., Fouque, P., Jean, J.: Improved key recovery attacks on reduced-round
AES in the single-key setting. In: EUROCRYPT 2013. Lecture Notes in Computer
Science, vol. 7881, pp. 371-387. Springer (2013).

11. Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: The retracing boomerang attack.
In: EUROCRYPT 2020. Lecture Notes in Computer Science, vol 12105, pp. 280-
309. Springer (2020).

12. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved cryptanalysis of Rijndael. In: FSE 2000. Lecture Notes in Computer
Science, vol. 1978, pp. 213-230. Springer (2001).
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