
Privacy Preserving OpenPGP Public Key
Distribution with Spamming Resistance⋆

Wenyuan Li1,2, Wei Wang �1,3, Jingqiang Lin4, Qiongxiao Wang1,2, and
Wenjie Wang1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100089, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing
100089, China

3 Data Assurance and Communication Security Research Center, CAS, Beijing
10089, China

4 School of Cyber Security, University of Science and Technology of China, Hefei
230027, Anhui, China
wangwei@iie.ac.cn

Abstract. OpenPGP public key distribution via Synchronizing Key-
Servers (SKS) is facing the challenges of user privacy leakage caused
by keyword search behaviors and service unavailability of OpenPGP
software caused by OpenPGP certificate spamming attack (CVE-2019-
13050). Most existing solutions to the problem dispense with the neces-
sary features and functions of SKS or Web of Trust (WoT) for attack
mitigation. In this paper, we put forward a solution which is privacy-
preserving and spamming-resistant, while maintaining the functionali-
ties of SKS and WoT. Considering the characteristics of our scenario,
we protect user privacy by introducing a third-party server, and pro-
pose a specific third party-based private set intersection protocol to im-
prove usability of OpenPGP software. Our protocol helps users filter out
the required key data by intersection computation between unbalanced
sets of keywords. We also propose an enhanced scheme for multi-key
query and further privacy protection. We evaluate the usability and pri-
vacy of our schemes. Experimental results show that our scheme can
largely reduce unnecessary data download with appropriate filter pa-
rameters. The proposed solution relies on the security of Elliptic Curve
Diffie–Hellman, HMAC-based Key Derivation Function, Bloom filter and
symmetric cryptographic encryption to defend against semi-honest ad-
versaries.

Keywords: Pretty Good Privacy · Key Distribution · Keyword Search
· Private Set Intersection.

⋆
�Wei Wang is the corresponding author. This work was supported by National Key
R&D Program of China (Grant No. 2020YFB1005800) and National Natural Science
Foundation of China (Grant No. 61772518)



1 Introduction

Pretty Good Privacy (PGP) is an encryption program that provides crypto-
graphic privacy and authentication for end-to-end data communication espe-
cially for e-mail communication. OpenPGP is a standard for e-mail encryption
originally derived from PGP. PGP adopts Web of Trust (WoT) structure for dis-
tributed key management. Besides Public Key Infrastructure (PKI) with Certifi-
cate Authorities (CA), WoT is another mechanism for verifying digital identities
on the Internet. In WoT, any entity can certify another entity by signing a cer-
tification signature for the binding relationship between a public key and the
signee’s identity. Certification signatures are the basis of WoT. Researchers have
investigated the properties of WoT [37] which is similar to Online Social Network
(OSN) such as Facebook and Twitter.

Since the beginning of year 2000, a wirte-only keyserver pool named Syn-
chronizing KeyServers (SKS) has been employed to OpenPGP public key dis-
tribution. To date, SKS has provided over 6 million OpenPGP public keys5 for
users to query without restriction. Other major key distribution approachs in-
clude Web Key Directory (WKD) [24] and DNS-Based Authentication of Named
Entities (DANE) [39]. WKD over HTTPS only provides keys without signatures.
DANE simplifies key content by adding only a few signatures that are consid-
ered helpful. OpenPGP public key distribution via SKS has two disadvantages.
One disadvantage is user privacy leakage caused by query behaviors. The other is
low availability of OpenPGP software caused by OpenPGP certificate spamming
attack.

On the one hand, the behaviors of users to query OpenPGP public keys
from SKS will reveal the privacy of users. The attackers may infer the identity of
users on the basis of the query information and the properties of WoT. Querying
OpenPGP public keys via SKS can be regarded as a fundamental database
operation called Keyword Search (KS) [15]. KS involves two parties: i) a server,
holding a database comprised of a set of payloads and associated keywords. ii)
a client, who may send queries consisting of keywords and receive the payloads
associated with these keywords. Searchable encryption [4] is a positive way to
protect sensitive data of users, which supports keyword search on encrypted
data. However, the huge amount of legacy data which is already known to SKS
in plain text renders the searchable encryption approach unrealistic.

On the other hand, the attackers of OpenPGP certificate spamming at-
tack [1] expanded the size of OpenPGP public keys in SKS by spamming a
quantity of signatures or large size signatures. The attack caused the failure
of key import in OpenPGP software such as GNU Privacy Guard (GPG) and
other usability issues. To mitigate the negative effects of the attack, GPG has
updated a new version [23] to ignore all the signatures except self-signatures
received from SKS. A draft [17] has proposed several simple mitigation methods
mainly from the perspective of keyservers. Moreover, a new keyserver named
keys.openpgp.org [2] separates an OpenPGP public key into identity informa-

5 https://pool.sks-keyservers.net/pks/lookup?op=stats

2



tion and non-identity information. Identity information is only distributed with
consent, and certification signatures in non-identity information are not dis-
tributed via keys.openpgp.org. Most of the mitigation recommendations and
measures above suggest to obsolete SKS, eliminate the features of WoT, and put
restrictions on user behaviors, which goes against the original intention of PGP
developers.

For privacy protection, we first reconstruct the database in SKS into pairs
of payloads and associated keywords, and split certification signatures and other
key information by disparate keywords. Then we introduce a third-party server
which helps users to search on encrypted pairs in SKS with encrypted keywords
in requests. To mitigate OpenPGP public key distribution attack with the reser-
vation of SKS and WoT, one solution is to give users the option to filter the
OpenPGP public key data before downloading by computing intersection be-
tween sets of keywords in the user requests and in the database.

The research efforts of Private Set Intersection (PSI) focus on protocols [20,
7, 22] for the case where two parties holding sets compare encrypted versions
of these sets in order to compute the intersection. While these protocols turn
out to be impractical for use-cases like OpenPGP public key distribution with
SKS. In our scenario, the PSI protocol needs a third-party server and should be
suitable for unbalanced sets when keys queried have been spammed. We propose
a third party-based PSI protocol specially for our scenario, and apply Elliptic
Curve Diffie–Hellman (ECDH), HMAC-based Key Derivation Function (HKDF),
Bloom filter, and symmetric cryptographic encryption to ensure security. The
third-party server for PSI computation in our scheme is called PSI Proxy. In
summary, we frame our key contributions as follows:

• We solve the problems of OpenPGP public key distribution with SKS on the
basis of the original features and normal functions of SKS and WoT for key
validation and verification.

• We first propose an OpenPGP public key distribution scheme for private
preserving and spamming resistance with a third party-based PSI protocol,
and an enhanced scheme with better privacy protection.

• We evaluate our schemes in terms of usability through user behavior simula-
tions and privacy in the semi-honest model. Our scheme can largely reduce
unnecessary data download, and has the high ability to resist various attacks.

The remainder of this paper is structured as follows. We review our research
background in Section 2. In Section 3, we describe the problem in brief, and give
our design principles and threat model afterwards. In Section 4, we describe our
basic and enhanced schemes for OpenPGP public key distribution with a third
party-based PSI protocol. We provide an evaluation of our scheme in terms of
usability and privacy in Section 5. Finally, we summarize related work in Section
6, and give a conclusion in Section 7.

3



2 Background

To start, we focus on the status quo and properties of OpenPGP public key
distribution, and introduce cryptographic building blocks that are required for
the remainder of this work.

2.1 OpenPGP and Web of Trust

OpenPGP is a standard [13, 12] for providing end-to-end security for e-mail
communication. In OpenPGP, User ID (including a user name and e-mail ad-
dress) identifies a user, and is associated with a public/private key pair (either
DSA/ElGamal or RSA) held by the user. Users can issue certification signatures
to each other by signing the binding relationship between a public key and an
identity with their private keys. These certification signatures are a significant
part of a valid OpenPGP public key. An OpenPGP public key consists of a num-
ber of records called packets. OpenPGP packets are assembled into sequences in
order to transfer keys. There is a public key ID in each Public-Key packet and an
issuer key ID in each Signature packet. The essential elements of a transferable
OpenPGP public key are as follows:

- One Public-Key packet (each contains a public key ID)
- Zero or more revocation signatures
- One or more User ID packets
- After each User ID packet, zero or more Signature packets (each contains an
issuer key ID)

- Zero or more User Attribute packets
- After each User Attribute packet, zero or more Signature packets
- Zero or more Subkey packets
- After each Subkey packet, one Signature packet, plus optionally a revocation

In PGP environment [40], a key that is not revoked or expired is valid
if it is users own key, or it is certified(signed) by other valid and trusted keys.
Certification signatures are shared on keyservers, and show that the issuer is sure
about the signee’s identity. While trust is only locally (by users themselves) and
not shared, and defines whose certification signatures users trust for validating
other’s keys. In GPG, the trust model is similar, but the trust information is
specifically stored in a local file named trustdb. Users sign each other’s keys and
progressively build a web of public keys interconnected by these certification
signatures which is so-called WoT [3].

2.2 Synchronizing Keyservers

SKS is widely used for OpenPGP public key distribution, and typically exists as
a keyserver pool which consists of several keyservers. The main innovation of SKS
is a highly-efficient set reconciliation algorithm [28] for keeping the keyservers
synchronized. The algorithm reconciles two similar sets held by different hosts.

4



OpenPGP users communicate with SKS using OpenPGP HTTP Keyserver Pro-
tocol (HKP) [35]. Developers have primitively designed SKS to be write-only, so
that the government can not forcibly delete or tamper the key data in SKS. The
original design purposes of SKS and WoT are necessary for key validation and
trust transitivity, which results in the difficulty to deal with OpenPGP certifi-
cate spamming attack. The reasons for the attack are as follows: i) OpenPGP
does not restrict the maximal amount of signatures in an OpenPGP public key.
ii) SKS only writes and does not validate the correctness and completeness of
uploaded keys or signatures. Any user can verify a key in SKS and upload a cer-
tification signature to SKS without authentication. iii) GPG or other OpenPGP
software has limitations on the size of the keys imported. The software may crash
when the imported data blocks become too large. iv) SKS runs a reconciliation
algorithm implemented as a software developed in Ocaml which is complex to
maintain.

2.3 Private Set Intersection

PSI is a cryptographic technique of secure multiparty computation (MPC). It
allows two parties holding sets to compare encrypted versions of these sets in
order to compute the intersection. In traditional scenario, neither party reveals
anything to the counterparty except for the elements in the intersection. While
in the server-client scenario, only the client learns the intersection of her set with
the set of the server, without the server learning intersection of his set with the
clients [32]. A naive solution of PSI has been proposed that both parties apply a
cryptographic hash function to their inputs and compare these hash values, which
is efficient but insecure. The researchers have proposed a variety of advanced PSI
protocols based on public key, oblivious transfer, circuit, third party and so on.
Inbar et.al [20] implemented PSI based on secret sharing and Garbled Bloom
Filter (GBF) as a variant of Bloom filter. Chen et al. [7] constructed a fast PSI
protocol with a small amount of communication between two parties using full
homomorphic encryption. This protocol is specially designed for the application
scenario when one of the two sets is much smaller than the other. These two sets
are named unbalanced sets. Third Party-Based PSI [22] realized a multi-party
PSI protocol aided by a third-party server.

2.4 Bloom Filter

Bloom filter is a data structure that was conceived by Burton Howard Bloom in
1970 to retrieve whether an element is in a collection [5]. Bloom filter will tell
either “possibly in set” or “definitely not in set”, and the degree of false positive
rate can be configured. Bloom filter represents a set X of n elements by an array
of m bits, and uses k independent hash functions. We describe below the initial,
add and check process of Bloom filter.

5



1) Before initialization, the generation parameters of Bloom filter m and k are
calculated according to n and an intended false positive rate p.

m = −n× ln p

(ln 2)2
k = ln 2× m

n
(1)

2) During initialization, an array with the length of m bits is generated, and
each bit is initialized to 0.

3) When adding an element s of X to Bloom filter, s is hashed with k hash
functions to get k indices and set 1 to these indices of Bloom filter.

4) When checking whether an element s′ belongs to X, s′ is hashed with k hash
functions to get k indices. If all these indices of Bloom filter are 1 then s′ is
considered to probably in X, otherwise s′ is not in X.

2.5 HMAC-based Key Derivation Function

HKDF [25] is a special Key derivation function (KDF) [6] based on HMAC.
HKDF function is divided into two phases: Extract and Expand. The Extract
phase converts the input key into a short key that satisfies the pseudo-random
nature. The Expand phase expands the pseudo-random key to the desired length.
The inputs of HKDF function contain a hash function, a source key material,
a extractor salt (which may be null or constant), a number of key bits to be
produced by HKDF, and a “context information” string (which may be null) [26].
The number and length of the output key depend on the particular cryptographic
algorithm that requires the key.

3 Assumptions and Goals

To present our proposal, we introduce the existing system of OpenPGP public
key distribution with SKS in brief, and point out its drawbacks. Based on the
issues in the existing system, we establish our design principles and threat model.

3.1 Problem Description

We provide the existing system of OpenPGP public key distribution via SKS
in Fig.1. Users are able to connect to SKS by setting an access point such as
pool.sks-keyservers.net in their OpenPGP software, and retrieve keys from SKS
with keyword like Key ID, User ID or Fingerprint. After sending a query request
to one of the keyservers, users will receive a response with payload (which is
usually a complete OpenPGP public key) associated with keyword in OpenPGP
format from the keyserver. Users can import payload into local keyring by using
an OpenPGP software if needed. In the above-mentioned system, usability is
lessened when users download or import payload with a quantity of signatures
which have been spammed into keys. Upon most occasions, a tiny minority of
these signatures are helpful for key validation or trust transitivity. At the same

6



time, user privacy is revealed when a user query SKS with keyword. All the
OpenPGP public keys in SKS are retrievable to users with no authentication
mechanisms. Moreover, the user communicates with SKS using HKP protocol,
which is considered insecure. There is probably a relationship between the user
and the owner of the key associated with keyword. The attackers may infer the
user’s identity on the basis of the query information and the properties of WoT.

Fig. 1. Existing OpenPGP public key distribution system

3.2 Design Principles

Considering the privacy and usability issues of the existing OpenPGP public key
distribution system, our scheme aims to achieve the following goals.

1) Compatible: Users can continue to use the original functions of SKS and
WoT for key validation and trust transitivity. There is no modification
required to the configuration of OpenPGP software for users to retrieve
payload which contains certification signatures.

2) Efficient: Users can filter payload before downloading with specific filter
conditions. The filtration can reduce user downloads of payload which fur-
ther mitigates OpenPGP certificate spamming attack. Users can only import
useful signatures for key validation and trust transitivity (For example, is-
suer key ID of a signature and Key ID of an introducer in trustdb are the
same). We allow a moderate number of false positives to be introduced to
hide the accurate number of filter conditions.

3) Anonymous: Attackers including semi-honest SKS and PSI Proxy can not
obtain any private data in the query or filter requests of users, and thus are
incapable of inferring the attributes of a user.

3.3 Threat Model

We develop our threat model with semi-honest adversaries including SKS and
PSI Proxy. There is no collusion between SKS and PSI Proxy. An attacker seeks
to learn the private information of a user. The private information consists of
keyword of query requests, filter conditions (like trustdb) and identity informa-
tion (like User ID). We list four types of possible attacks in the key distribution
process. An attacker can first perform a dictionary attack, an eavesdropping at-
tack or/and a replay attack to obtain the query or filter information, and then
perform an attribute inference attack to infer user identity or other attributes.
While the IP address tied to requests, a user can rely on a mix network such as
Tor. IP address issue is out of scope of our threat model.

7



Dictionary Attack: In OpenPGP, the data type and length of keyword have
been explicitly defined. Key ID is defined as a fixed eight-octet scalar. User ID
is an UTF-8 text with no restrictions on its content. The fingerprint of a key
is a MD5 hash which has been deprecated or a 160-bit SHA-1 hash. Given the
format and length of keyword,a dictionary can be pre-computed by an attacker.
The attacker can create requests with keyword in the dictionary, and attempt to
collide with the query or filter information of any other users with these requests.

Eavesdropping or Replay Attack: In an eavesdropping attack, an attacker
may take advantage of unsecured network communications to access the request
and response of a query between users, SKS, and PSI Proxy. In a replay at-
tack, an attacker can intercept a request of a user and re-transmit it to acquire
payload. As all the payload in SKS and the local trust information of the user are
constantly updated, the attacker can compare the present data to the previous
ones, and may learn the private information of the user from the delta data.

Attribute Inference Attack: In attribute inference attack [19] towards OSN,
an attacker aims to propagate attribute information of social network users with
publicly visible attributes to users with missing or incomplete attribute data.
Further, attackers can identify users in OSN with limited information [38]. In
attribute inference attack towards WoT, an attacker may infer user identity
on the strength of keyword and filter conditions. There may be a relationship
between the user and the owner of the key queried or trusted. Based on the rela-
tionships and the characteristics of WoT, the user’s attributes such as OpenPGP
public key ID, User ID or its circle of friends can be inferred. Attackers can take
advantage of these attributes to attack not only the user but also their friends
through spam, XSS, phishing or malware which have occurred in OSN [14].

4 Scheme

Refer to our design principles, we propose an OpenPGP public key distribution
system which introduces a third-party server PSI Proxy for PSI computation
in Fig.2. When a user sends a query request with keyword to SKS, SKS sends
processed payload associated with keyword to PSI Proxy. Then the user sends
a filter request with filter conditions such as trustdb to PSI Proxy. PSI Proxy
filters payload by running a specific PSI protocol between the sets of keyword
in trustdb and payload, and returns filtered payload to the user.

Our design relies on a combination of ECDH6, HKDF, Bloom filter7 to
address all the risks outlined in our threat model. Here, we explain the reason
why the existing PSI protocols can not be directly used in our scenario. Then
we depict our basic scheme with a PSI protocol dedicated to OpenPGP public

6 Our scheme can use other key exchange algorithms such as Diffie-Hellman (DH).
7 Bloom filter can be replaced by Cuckoo filter [11]. Both filters are very fast and
compact, and may return false positives as answers to set-membership queries.

8



Fig. 2. Privacy Preserving and spamming resisting OpenPGP public key distribution
system

key distribution, and detail the data exchanged between a user, SKS, and PSI
Proxy. We also present a strengthened scheme for further privacy protection, and
provide suggestions for optimization to improve compatibility and availability.

4.1 Protocol Selection

The PSI protocol in our scheme should meet two requirements. The first one is
filtering payload to reduce downloads. The second one is hiding the query and
filter information both in content and in number. We observe the characteristics
of our scenario, and classify our scenario into one of PSI application scenarios.
All the payload in SKS is openly searchable. Thus we need to select the PSI
protocols that apply to the server-client scenario. In addition, when a key suffers
from a certificate spamming attack, the number of signatures spammed into the
key is much larger than the number of introducers in trustdb. Therefore, PSI
protocols for unbalanced sets are proper for our scenario.

We focus on several existing PSI protocols which may fulfill our require-
ments. The PSI protocol using secret sharing and GBF requires users to receive
complete data, which can not achieve the purpose of filtering. When applying the
PSI protocol using full homomorphic encryption for unbalanced sets to our sce-
nario, users still need to send the intersection results as keyword to get associated
payload from SKS. SKS can learn the filter information from the intersection.
The PSI protocols using a third party can hide the query information from SKS,
but the third-party server simply computes the intersection and can not index
keyword to the corresponding payload. Thus, we design a PSI protocol that is
proposed specifically for OpenPGP public key distribution scenario.

4.2 Scheme Details

Our scheme consists of two main phases: Query phase and Filter phase. In Query
phase, a user sends a query request with keyword to SKS. SKS processes the
payload and associated keyword, and sends them to PSI Proxy. In Filter phase,
the user sends trustdb in a filter request to PSI Proxy. PSI Proxy filters the
processed payload by running a PSI protocol between trustdb and keyword. We

9



Symbol Description

H a public set that contains n hash functions, H =
{h1, h2, h3, . . . , hn}

K a symmetric key generated by ECDH
IV an initialization vector for symmetric encryption
qid an auto-increment ID in a long long int type for each query
L a number of key bits produced by HKDF
XTS a secret extractor salt of HKDF
CTXinfo a “context information” string of HKDF
err rate an intended false positive rate of Bloom filter
nh a number of hash functions of Bloom filter
m a length of Bloom filter

pidi public key ID of ith key

sidi,j issuer key ID of jth signature in ith key

tidi Key ID of ith introducer in trustdb

infoi Other key information except signatures in ith key

sigi,j jth signature in ith key
info pairi the pair of infoi and associated pidi, info pairi = (pidi, infoi)
sig pairi,j the pair of sigi,j and associated Key IDs (including pidi and

sidi,j), sig pairi,j = ((pidi, sidi,j), sigi,j)
S1 the database of info pairi in SKS
S2 the database of sig pairi,j in SKS
S the entire database in SKS, S = S1 ∪ S2

Table 1. Notation list

define the variants in our scheme, and list them in Tab.1. We reconstruct the
database S in SKS as two kinds of pairs: info pairi represented as (pidi, infoi),
and sig pairi,j represented as ((pidi, sidi,j), sigi,j). Before querying, the user and
SKS generate K, and then safely transmit other parameters including IV , qid,
nh (nh ≤ n), L and XTS with K.

Query Phase: When querying an OpenPGP public key p̂k, an user sends
public key ID ˆpid of p̂k as keyword8. SKS finds the pairs (both info pairi
and sig pairi,j) having ˆpid as keyword. For these pairs, SKS calculates HKDF
values SKDi,j of issuer key IDs, and encrypts all the payload using Algorithm 1
to complete the data processing in Eq.(2). SKS uses sidi,j as SKM and qid as
CTXinfo for HKDF function. After processing, SKS sends qid, encî, and the
set of processed pairs Sig pairî to PSI Proxy.

((pidi, sidi,j), sigi.j) → ((pidi, SKDi,j), EncK (sigi,j)) (2)

Filter Phase: The user locally adds tidi to Bloom filter BFc by HKDF values
TKDi of tidi in trustdb, which is outlined in Algorithm 2. The user uses tidi

8 We choose Key ID as keyword to make our solution more concise. Users can also
use User ID or fingerprint in the implementation.

10



Algorithm 1 ProcessData

Input: S1, S2, IV,H, nh, XTS, qid, L
Output: encî, Sig pairî
1: for (pidi, infoi) ∈ S1 do
2: if pidi = ˆpid then
3: î← i
4: encî ← EncK (infoî)
5: for j = 1; j ≤ ns

î
; j ++ do

6: for k = 1; k ≤ nh; k ++ do
7: SKDî,j [k]← HKDF (hk, XTS, sidî,j , qid, L)
8: end for
9: encî,j ← EncK

(
sigî,j

)
10: Sig pairî[j]← ((pidî, SKDî,j), encî,j)
11: end for
12: end if
13: end for

as SKM and qid as CTXinfo for HKDF function. Then the user sends qid,
BFc, and nh in a filter request to PSI Proxy. m and nh of BFc are calculated by
err rate and the set size nt of trustdb using Eq.(1) in 2.4. PSI Proxy searches
Sig pairî according to qid as the input of Algorithm 3. The output Sig which
contains nsf signatures is sent to the user together with encî as payload. All the
data received by the user can be decrypted with K and IV , and imported into
local keyring.

Algorithm 2 CreateFilterRequest

Input: err rate, nt, H, nh, XTS, trustdb, qid, L
Output: BFc

1: initial(BFc, err rate, nt)
2: for tidi ∈ trustdb do
3: for k = 1; k ≤ nh; k ++ do
4: TKDi[k]← HKDF (hk, XTS, tidi, qid, L)
5: add(BFc, TKDi[k])
6: end for
7: end for

4.3 Extension to Public Key IDs

Our scheme applies for single-key queries, and can not hide public key IDs
queried from SKS. We suggest users to rely on Tor to query. On the basis of our
scheme, we propose an enhanced scheme shown in Fig.3 by applying a “double
filtration” solution. As the number of keys queried is far less than the amount of
keys in SKS, the PSI computation for issuer key IDs can also be applied to public
key IDs. Especially when the user queries multiple keys in a query, this extension
can further enhance privacy protection with a few downloads of payload.

11



Algorithm 3 ComputeSetIntersection

Input: BFc, Sig pairî
Output: Sig, nsf

1: for j = 1, nsf = 1; j ≤ nsi ; j ++ do
2: iscontian← check(BFc, SKDî,j)
3: if iscontain == 1 then
4: ĵ ← j
5: Sig[nsf ++]← Enck

(
Sigî,ĵ

)
6: end if
7: end for

In Query phase, SKS needs to shuffle the orders of pairs before processing
(in case semi-honest PSI Proxy acts as a user to get the indices of all the data).
Then as shown in Eq.(3) and Eq.(4), SKS computes HKDF values PKDi of pidi,
and processes all the pairs in S. SKS sends PKDi and the processed database
to PSI Proxy.

(pidi, infoi) → (PKDi, EncK (infoi)) (3)

((pidi, sidi,j), sigi.j) → ((PKDi, SKDi,j), EncK (sigi,j)) (4)

In Filter phase, when querying nq keys with a set of public key IDs named
qlist, the user uses Algorithm 2 to add these keys into Bloom filter BFq by
HKDF values PKDi (err rate of BFq can differ from that of BFc). The user
then sends BFq to PSI Proxy. PSI Proxy uses Algorithm 3 to filter info pairi
in S1 with BFq as the first level of filtration, finding nkf public key IDs that
may be involved in qlist. PSI Proxy then performs Filter phase of the basic
scheme towards sig pairi,j having the same keyword pidi in S2 with BFc as the
second level of filtration, and sends the output as payload to the user. The user
encrypts the filter result with K and IV , and selects the desired payload by
qlist. While the limitation of this solution is for each query, SKS is required to
process the entire database S, including HKDF calculation of all the keyword
and symmetric encryption of all the payloads.

4.4 Optimization

On top of our scheme, several optimizations can be carried out to improve com-
patibility and availability. With no need to modify the original functions of SKS,
one or more proxy servers can be deployed on SKS side. The proxy server takes
charge of SKS for the interactions with users or PSI Proxy and payload pro-
cessing to improve compatibility. Simplifying HKDF function to simple Hash
function in our scheme helps decrease computation of SKS, which may suffer
from a dictionary attack. However, the employ of Bloom filter still introduces
false positives to hide the set size and content of keyword. By adjusting the
parameter err rate and L (not less than the hash function output length), the
communication amount of HKDF values from SKS to PSI Proxy can be effec-
tively reduced.

12



Fig. 3. An extended scheme to enhance privacy protection which applies two levels of
filtration. Before filtering, SKS shuffles all the OpenPGP public keys in the database,
and users generate BFq with qlist and BFc with trustdb. In first filtration, PSI Proxy
filters pid with BFq to get the intersection sk of public keys. In second filtration, PSI
Proxy filters sid which has certified sid in sk with BFc to get the intersection ss of
signatures. With all the Key IDs in sk and ss as keyword, PSI Proxy sends encrypted
payload as filter result to users.

5 Evaluation

We evaluate our solutions in terms of usability and privacy. We set disparate
benchmarks to evaluate the effect of filtering in the basic scheme. We also analyze
the complexities and the storage required for the parties in both solutions. For
the possible attacks in threat model, we evaluate the cryptographic operations
and techniques in our scheme for the processing and transmission of sensitive
data.

5.1 Experimental Settings

We implement our scheme including a GPG user, PSI Proxy, and one keyserver
of SKS in Ubuntu 16.04 operating system and C++ programming language. We
use OpenSSL library (v. 1.1.1) for 128-bit ECDH key exchange, HKDF com-
putation, and AES-128-CBC symmetric encryption. We need to simulate the
private information qlist and trustdb of users. As the characteristics of WoT are
similar to those of OSN, With reference [29] to the number of friends in OSN, the
number of key IDs in the user’s local trustdb is assumed to be in the range of 0

13



to 100. We randomly generate Key IDs in qlist and trustdb in the normal range.
We choose the main keyserver of SKS of which the URL is https://pool.sks-
keyservers.net/. For an OpenPGP public key in SKS, the reasonable number of
signatures should be less than or around 1000 [34] which can be regarded as a
criterion for whether the key has been attacked. We find several representative
keys that have suffered from OpenPGP certificate spamming attack in SKS. The
user name of these keys are Yegor Timoshenko (174622 signatures), Robert J.
Hansen (149120 signatures), Ryan McGinnis (100002 signatures), Patrick Brun-
schwig (151491 signatures), Lance Cottrell (34391 signatures).

Our scheme also consider data updates in SKS and in users’ trustdb. There
are constant updates on the key data in SKS such as revocations of the existing
keys or signatures or the uploading of fresh keys or signatures. In the implemen-
tation, users send a query request with a parameter of time range, and receive
the key data with updates in this time range from SKS. Users can modify the
trust information in trustdb subjectively. When trustdb changes, the parameters
of Bloom filter need to be modified by users to generate a new filter.

(a) nt = 10 (b) nt = 20

(c) nt = 50 (d) nt = 100

Fig. 4. Experimental results of filtration. We choose the set size nt of trustdb ∈
{10, 20, 50, 100} and the average set size of signatures of the target keys ns ∈
{538, 1480, 34391, 100002, 147622}. We get the ratio filter rate of user downloads to
the original key size under different err rate.

14



5.2 Usability Evaluation

We compare the filtering effect in the basic scheme under diverse set sizes of
keyword through the experimental results. As shown in Fig.4, the greater the
disparity of the set sizes, the greater the mitigation effect of OpenPGP certificate
spamming attack. Then we set different err rate of Bloom filter to evaluate the
impact of it on downloads. In most cases in Fig.4, as err rate reduces, the
decrease of downloads becomes more pronounced. We suggest err rate to be
less than 0.3 whthin which the reduction of downloads can be more than half.
Supposing the average size of signatures is s, regardless of the fact that the size
of signatures can be exaggerated, we get the decline d of downloads which can
be approximately calculated as ns(1− p)s theoretically if ns is large enough.

For the basic solution in 4.2 and the improved solution in 4.3, we depict the
computation and communication complexities of users and SKS, and the stor-
age required by PSI Proxy during key distribution in Tab.2. The complexities
and storage are linear to the number of users. The computation complexity is
expressed as the number of symmetric cryptographic operations (sym) and the
number of HKDF operations (hkdf). ECDH operations which perform only once
before each query are not represented in Tab.2. The communication complex-
ity of a user in our schemes is much lower than that in the existing system for
the most part, and the computation complexity depends mainly on the number
of symmetric encryption operations. The complexities of SKS depend on the
number of signatures in the keys queried in the basic scheme. While they de-
pend on the total amount of pairs in SKS in the improved scheme. In addition,
the data volume that PSI Proxy needs to store is approximately equal to the
communication amount transmitted by SKS.

Role Type Basic scheme Improvement scheme

User

Computation

(#ops hkdf/sym)

ntnh hkdf

nsf + 1 sym

(nt + nq)nh hkdf

(nsk + 1)nkf sym

Communication (bit) σ +m+ ℓ+ k + nsfs σ + 2m+ ℓ+ nkfk + nkfnsfs

SKS

Computation

(#ops hkdf/sym)

nsnh hkdf

ns + 1 sym

nsnknh hkdf

(ns + 1)nk sym

Communication (bit) σ + ℓ+ k + nss+ nsnhL σ + ℓ+ nkk + nknss+ nsnknhL

PSI Proxy Storage (bit) m+ ℓ+ k + nss+ nsnhL 2m+ ℓ+ nkk + nknss+ nsnknhL

Table 2. Complexities and storage for OpenPGP public key distribution (σ: bit size
of the communication required for key exchange and data transmission before query;
ℓ: bit size of qid; hkdf: HKDF operations; sym: symmetric cryptographic operations;
nk, nkf : set sizes as defined in 4.2; ns, nsf : the average number of the signatures in each
key and in the intersection; k, s: bit size of infoi and sigi,j defined in 4.2; L: HKDF
parameter; m,nh: Bloom filter parameters).

15



5.3 Privacy Evaluation

Before the privacy evaluation of our proposal, we explain the security of crypto-
graphic algorithms and techniques used in our solution which consists of ECDH,
HKDF, Bloom filter and symmetric encryption. ECDH is one of key exchange
schemes based on ECC which provides the same cryptographic strength as the
RSA system, but with much smaller keys. We apply HKDF function on the ba-
sis of the properties of the HMAC scheme both as extractor and pseudorandom
function. In our solution, we further strengthen the security of HKDF with a
secret salt. For Bloom filter, a query returns either “possibly in set” or “defi-
nitely not in set” rather than an exact element in the set. The apply of Bloom
filter also automatically introduces false positives for filtering, which can hide
the accurate set size and content. For each query, a key for symmetric encryption
is pre-shared between users and SKS, and is invalidated each time the user de-
crypts the result. In both our basic and extended scheme, all the sensitive data
and parameters between users, SKS, and PSI Proxy are transmitted in a non-
plaintext form. We carry out security analysis of our scheme towards possible
attacks outlined in the threat model on the basis of the security of cryptographic
algorithms and techniques.

Collision Resistant: The parameters of HKDF function are agreed between
users and SKS in a secure channel. Without the parameters of other users, an
attacker can not launch a dictionary attack by the computation of HKDF val-
ues for all the keywords. Although SKS can obtain the parameters and compute
HKDF values, it can not create filter requests without qlist and trustdb of users.
In our enhanced solution, we ask SKS to shuffle all the payload before process-
ing to prevent semi-honest PSI Proxy. If SKS processes the payload in a fixed
sequence, PSI Proxy can act as a user to query with all the keywords in the
dictionary. Thus, PSI Proxy can learn the real data content by the sequential
index. When a user filers payload through PSI Proxy, PSI Proxy can learn the
privacy information of the user by the indices of filter results. After SKS shuffling
all the keys, PSI Proxy can not learn the plaintext of payload by indices.

Eavesdropping and Replay Resistant: The attacker eavesdropping on users,
SKS, and PSI Proxy can not learn any privacy information from the requests
and responses which are all encrypted. Our schemes can also resist replay attacks
by adding a query ID for each query. Query ID is auto-increment for each query
and is associated with the symmetric key exchanged between users and SKS.
The attacker can be detected by SKS or PSI Proxy when re-transmitting the
query or filter requests with the same or uncorrect query ID.

Identity Anonymous: An attacker can not identify a user with no access to
user privacy information particularly the filter information like trustdb. In the
basic scheme, semi-honest SKS can only obtain keyword of the key queried.
While SKS can not get either qlist as keyword and trustdb in the enhanced

16



scheme. Other attackers like semi-honest PSI Proxy can not obtain all the sen-
sitive information. Both qlist and trustdb are in the form of Bloom filter, and
payload processed by SKS is in the form of ciphertext. Moreover, the parameters
of Bloom filter are constantly modified by users to generate new filters, so that
attackers are agnostic about the variation of qlist and trustdb.

6 Related Work

PSI protocols for unbalanced sets have been used to protect user privacy in many
application scenarios. Thomas et al. [36] introducing a PSI protocol based on
ECDH key Exchange which is used to mitigate credential stuffing attack. Kales et
al. [21] implemented a PSI protocol based on Oblivious Pseudo-Random Func-
tion (OPRF) and Cuckoo filter to protect the privacy of contact information
of mobile devices. Related to PSI, private keyword search which is also intro-
duced as Oblivious Keyword Search (OKS) [31] has become another problem to
solve for privacy protection of query. Kushilevitz and Ostrovsky [27] first sug-
gests a single-server Private Information Retrieval (PIR) protocol for obtaining
a semi-private Keyword Search (KS) protocol. PIR schemes allow a user to re-
trieve the ith bit of an n-bit database, without revealing to the database the
value of i. There are two classes of PIR protocols. Information-theoric PIR (IT-
PIR) [9] provides security guarantees, and is usually more computationally effi-
cient. However, any non-trivial IT-PIR requires multiple non-colluding servers.
Chor et al. [8] proved that the trivial protocol in which clients are sent the entire
database is communication optimal in the single-server setting. Computational
PIR (cPIR) [10] can achieve sublinear communication with a single server, but
is typically more computationally expensive as it usually involves cryptographic
operations based on public-key primitives to be carried out on each element of
the database. Other techniques for private keyword search are homomoephic
encryption [16], oblivious transfer [33], oblivious-RAM (ORAM) [18], oblivious
polynomial Evaluation [30] and searchable encryption [4].

7 Conclusion

In this paper, We first propose an OpenPGP public key distribution scheme
with an effective third party-based PSI protocol for unbalanced sets to deal with
user privacy leakage and certificate spamming attack. We enhance our scheme
by applying a “double filtration” solution for further user privacy protection.
Our schemes applis cryptographic operations and techniques to prevent privacy
disclosure to defend against semi-honest adversaries. With appropriate filter pa-
rameters, our shemes can effectively reduce unnecessary user download to resist
certificate spamming attack.

However, in our enhanced scheme, each query requires SKS to fully encrypt
the database, which increases the computational and communication complexity.
Future research may consider to combine PIR to remove the third party and
perfect our proposal which can be implemented in a multi-user scenario.

17



References

1. CVE-2019-13050. https://nvd.nist.gov/vuln/detail/CVE-2019-13050 (2019)
2. keys.openpgp.org. https://keys.openpgp.org (2019)
3. Abdul-Rahman, A.: The pgp trust model. In: EDI-Forum: the Journal of Electronic

Commerce. vol. 10, pp. 27–31 (1997)
4. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable

encryption. In: Annual International Cryptology Conference. pp. 535–552. Springer
(2007)

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

6. Camenisch, J., Fischer-Hübner, S., Rannenberg, K.: Privacy and identity manage-
ment for life. Springer Science & Business Media (2011)

7. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. pp. 1243–1255 (2017)

8. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Citeseer
(1997)

9. Demmler, D., Herzberg, A., Schneider, T.: Raid-pir: Practical multi-server pir.
In: Proceedings of the 6th edition of the ACM Workshop on Cloud Computing
Security. pp. 45–56 (2014)

10. Dong, C., Chen, L.: A fast single server private information retrieval protocol
with low communication cost. In: European Symposium on Research in Computer
Security. pp. 380–399. Springer (2014)

11. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: Prac-
tically better than bloom. In: Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and Technologies. p. 75–88.
CoNEXT ’14, Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2674005.2674994, https://doi.org/10.1145/2674005.

2674994

12. Finney, H., Donnerhacke, L., Callas, J., Thayer, R.L., Shaw, D.: OpenPGPMessage
Format. RFC 4880 (Nov 2007). https://doi.org/10.17487/RFC4880, https://rf

c-editor.org/rfc/rfc4880.txt

13. Finney, H., Thayer, R.L., Donnerhacke, L., Callas, J.: OpenPGP Message Format.
RFC 2440 (Nov 1998). https://doi.org/10.17487/RFC2440, https://rfc-edito

r.org/rfc/rfc2440.txt

14. Fire, M., Goldschmidt, R., Elovici, Y.: Online social networks: threats and solu-
tions. IEEE Communications Surveys & Tutorials 16(4), 2019–2036 (2014)

15. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Theory of Cryptography Conference. pp. 303–324.
Springer (2005)

16. Gentry, C., et al.: A fully homomorphic encryption scheme, vol. 20. Stanford uni-
versity Stanford (2009)

17. Gillmor, D.K.: Abuse-Resistant OpenPGP Keystores. Internet-Draft draft-dkg-
openpgp-abuse-resistant-keystore-04, Internet Engineering Task Force (Aug 2019),
https://datatracker.ietf.org/doc/html/draft-dkg-openpgp-abuse-resista

nt-keystore-04, work in Progress
18. Goldreich, O.: Towards a theory of software protection and simulation by oblivious

rams. In: Proceedings of the nineteenth annual ACM symposium on Theory of
computing. pp. 182–194 (1987)

18



19. Gong, N.Z., Liu, B.: Attribute inference attacks in online social networks. ACM
Transactions on Privacy and Security (TOPS) 21(1), 1–30 (2018)

20. Inbar, R., Omri, E., Pinkas, B.: Efficient scalable multiparty private set-intersection
via garbled bloom filters. In: International Conference on Security and Cryptogra-
phy for Networks. pp. 235–252. Springer (2018)

21. Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile private
contact discovery at scale. In: 28th {USENIX} Security Symposium ({USENIX}
Security 19). pp. 1447–1464 (2019)

22. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set inter-
section to billion-element sets. In: International Conference on Financial Cryptog-
raphy and Data Security. pp. 195–215. Springer (2014)

23. Koch, W.: Gnupg 2.2.17 released to mitigate attacks on keyservers. https://li

sts.gnupg.org/pipermail/gnupg-announce/2019q3/000439.html (2019)
24. Koch, W.: OpenPGP Web Key Directory. Internet-Draft draft-koch-openpgp-

webkey-service-11, Internet Engineering Task Force (Nov 2020), https://data

tracker.ietf.org/doc/html/draft-koch-openpgp-webkey-service-11, work in
Progress

25. Krawczyk, D.H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). RFC 5869 (May 2010). https://doi.org/10.17487/RFC5869, ht

tps://rfc-editor.org/rfc/rfc5869.txt
26. Krawczyk, H.: Cryptographic extraction and key derivation: The hkdf scheme. In:

Annual Cryptology Conference (2010)
27. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,

computationally-private information retrieval. In: Proceedings 38th annual sym-
posium on foundations of computer science. pp. 364–373. IEEE (1997)

28. Minsky, Y., Trachtenberg, A.: Practical set reconciliation. In: 40th Annual Allerton
Conference on Communication, Control, and Computing. vol. 248. Citeseer (2002)

29. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.:
Measurement and analysis of online social networks. In: Proceedings of the
7th ACM SIGCOMM Conference on Internet Measurement. p. 29–42. IMC
’07, Association for Computing Machinery, New York, NY, USA (2007).
https://doi.org/10.1145/1298306.1298311, https://doi.org/10.1145/1298306.

1298311
30. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM Journal on Comput-

ing 35(5), 1254–1281 (2006)
31. Ogata, W., Kurosawa, K.: Oblivious keyword search. Journal of complexity 20(2-

3), 356–371 (2004)
32. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private set intersection

using permutation-based hashing. Cryptology ePrint Archive, Report 2015/634
(2015), https://eprint.iacr.org/2015/634

33. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptol.
ePrint Arch. 2005(187) (2005)

34. Richters, O., Peixoto, T.P.: Trust transitivity in social networks. PloS one 6(4),
e18384 (2011)

35. Shaw, D.: The OpenPGP HTTP Keyserver Protocol (HKP). Internet-Draft draft-
shaw-openpgp-hkp-00, Internet Engineering Task Force (Mar 2003), https://da

tatracker.ietf.org/doc/html/draft-shaw-openpgp-hkp-00, work in Progress
36. Thomas, K., Pullman, J., Yeo, K., Raghunathan, A., Kelley, P.G., Invernizzi, L.,

Benko, B., Pietraszek, T., Patel, S., Boneh, D., et al.: Protecting accounts from
credential stuffing with password breach alerting. In: 28th {USENIX} Security
Symposium ({USENIX} Security 19). pp. 1556–1571 (2019)

19



37. Ulrich, A., Holz, R., Hauck, P., Carle, G.: Investigating the openpgp web of trust.
In: European Symposium on Research in Computer Security. pp. 489–507. Springer
(2011)

38. Vesdapunt, N., Garcia-Molina, H.: Identifying users in social networks with limited
information. In: 2015 IEEE 31st International Conference on Data Engineering. pp.
627–638 (2015). https://doi.org/10.1109/ICDE.2015.7113320

39. Wouters, P.: DNS-Based Authentication of Named Entities (DANE) Bindings for
OpenPGP. RFC 7929 (Aug 2016). https://doi.org/10.17487/RFC7929, https:

//rfc-editor.org/rfc/rfc7929.txt

40. Zimmermann, P.R.: The official PGP user’s guide. MIT press (1995)

20


