
UC-Secure Cryptographic Reverse Firewall–Guarding Corrupted
Systems with the Minimum Trusted Module

Geng Li1, Jianwei Liu2, Zongyang Zhang2,?, and Yanting Zhang2

1 National Computer Network Emergency Response Technical Team/Coordination Center of China, China
2 School of Cyber Science and Technology, Beihang University, China
{ligeng,liujianwei,zongyangzhang,yantingzhang}@buaa.edu.cn

Abstract. Nowadays, mass-surveillance is becoming an increasingly severe threat to the public’s pri-
vacy. The PRISM and a series of other events showed that inner attacks such as subversion attacks
may exist in the current network extensively. As an important strategy to defend users’ privacy against
these attacks, cryptographic reverse firewall (CRF) is designed to be a middle-box, modifying all the
messages coming in and out of a computer. However, the current formal definition of CRFs merely
considers a single protocol session. If such a CRF applies to multiple entities, the security of every en-
tity could not be deduced directly, which leads to an application limitation. In this work, we re-define
the notion of CRF from a new perspective based on UC-emulation. Our new definition expresses all
expected properties of a CRF in a more brief way, under the universal composition environment. We
present a composition theorem which enables deploying one CRF for a local area of network rather than
a single computer, and this can significantly reduce the number of CRFs used in practical applications.

As another part of this work, under the new definition, we present the first deterministic CRF con-
struction. Compared with existing CRFs, our construction only requires secure randomness in its initial
phase rather than every protocol session, and such randomness can be acquired from a public resource.
Noting that the probabilistic algorithms are the main targets of subversion attacks, our work makes it
much easier to realize a trusted CRF, and thus, pushes CRFs from a concept to application with one
more step.

Keywords: Post-Snowden cryptography · Subversion attack · Cryptographic reverse firewall · Univer-
sal composition · Security implementation

1 Introduction

The PRISM has attracted great attention to the risk of mass-surveillance. A series of events implied that some
powerful institutions may monitor people’s private conversation and other online activities, via some special
methods which are out of the consideration of conventional cryptography. Subversion attack is a typical
attack method in the mass-surveillance, which deviates the implementations of cryptographic algorithms
from the corresponding specifications in an undetectable way, and only the backdoor holder is able to
recognize the subverted implementations and acquire user’s private information based on their outputs. Due
to the effectiveness and concealment, the subversion attack has been explored by a lot of works, and it serves
as an essential foundation for Post-Snowden cryptography.

To deal with subversion attacks, researchers have proposed several defending strategies, such as the split-
program [17], multi-source components [13], public random resources [1], and cryptographic reverse firewalls
(CRFs) [15,10,8]. CRF is a machine sitting between a user’s computer and the outside world, modifying all
the incoming and outgoing messages to guard the protocol against information leakage. On the one hand, a
CRF is assumed to be a trusted module, i.e., the implementation should completely obey its specification.
On the other hand, however, a CRF is still a public entity, saying, it can only access public information such
as public-keys and ciphertexts. Mironov and Stephens-Davidowitz [15] formally defined a CRF with three
important properties: functionality-maintaining, security-preserving, and exfiltration-resistance.

? Corresponding author

Assumed to be trusted, a CRF seems to exclude the risk of subversion attacks in an ideal way. However,
the current theory is a little imperfect from the view of practical applications. Following the definition in
work [15], we need to deploy a CRF for every entity in the reality (as shown in Fig. 1). This may imply a
logical contradiction: we worry about the credibility of user’s computer, but at the same time, we directly
assume the existence of the same amount of trusted modules (CRF). Therefore, the idea of CRF just bypasses
the difficulty in the mass-surveillance, and the tricky problem remains unsolved.

We claim that in a reasonable design, the number of CRFs should be much less than the number of users’
computers, thus, we can concentrate to achieving these small amount of trusted modules to protect the
whole system. Concretely, as shown in Fig. 2, a CRF serves for a local area of network containing multiple
computers. It is straightforward that this framework is much more practical than the previous “one-one”
pattern. However, this “one-many” framework is actually out of the consideration of the current definition.
Here, several entities share a CRF, and a CRF may serve for multiple kinds of protocol. It is inevitable that
different protocol sessions may have shared information or joint state. We cannot ensure that a CRF under
the current definition is able to protect every entity in such a compositional setting. Thus, we call for a new
definition of CRFs to adapt to this setting.

outside world

CRFCRFCRF

Fig. 1. One-one pattern of CRF deployment

outside world

CRF

Fig. 2. One-many pattern of CRF deployment

Besides, another factor that inspires us to revisit the formalization of CRF is the redundancy of the
current definition [15], where the relationship between security-preserving and exfiltration-resistance is much
complex. These two properties sometimes are equivalent, but sometimes have subtle differences. Including
both of them as basic requirements of a CRF seems redundant, while omitting either one will render the
definition incomplete. Therefore, it is meaningful if we could find a method to conclude all the expected
properties of a CRF with only one expression.

Under the current definition [15], researchers now have proposed a series of constructions of CRF. To the
best of our knowledge, all these CRFs need to generate the same amount of randomness to the underlying
protocol. We should note that achieving the credibility of probabilistic implementations is far more diffi-
cult than deterministic implementations, thus, generating such a large amount of randomness increases the
difficulty of realizing a trusted CRF. If we could construct a CRF with only deterministic algorithms, the
meaning of CRFs will be significantly increased. This work may also initialize another line of research, i.e.,
removing the assumption that CRFs are trusted modules, and including CRFs also under the consideration
of subversion attacks.

1.1 Our Contribution

The main purpose of this paper about CRF is “guarding corrupted systems with the minimum trusted
module”, and this keynote can be interpreted from two levels. In the first level, we propose the scenario that
using one CRF to guard multiple computers. We re-define the notion of CRF based on the UC framework,

2

which is more compatible with such compositional settings. In the second level, we try to further shrink the
trusted element of CRF, by designing a CRF only using deterministic algorithms.

Re-definition of a CRF based on UC-emulation. Based on the UC-emulation[5,6], we re-define the
notion of CRF. All analyses in this paper are under the precondition that the specification of a protocol
can emulate the ideal functionality perfectly. We say a CRF guards the protocol, if either it could detect
the subverted implementations, or it could correct the corrupted protocol to emulate the ideal functionality,
with no environment being able to distinguish between these two cases. We build the new definition by three
steps: Firstly, we specify the formalization of a protocol using the language of UC framework; Then, we
formulate the deployment and operation of a CRF; Finally, we present the security definition of a CRF.

Compared with the current one, our new definition has at least two advantages. Firstly, this definition
is designed from the view of composition. We present a composition theorem, which demonstrates that
the CRF’s security property for every single session does not decline in any compositional setting. That
is to say, when a CRF deals with multiple sessions or multiple protocols at the same time, even though
different sessions have shared information or joint state, every protocol session can still UC-emulate the ideal
functionality. Thus, such definition provides a basis for the “one-many” deployment in applications as shown
in Fig. 2. Secondly, the new definition incorporates the three basic requirements (functionality-maintaining,
security-preserving and exfiltration-resistance) into one property, which makes the expression far more clear.
We make a rigorous comparison between the two definitions of a CRF, proving that the new definition implies
the current one in a general sense.

Construction of a deterministic CRF. Our construction is based on the classical framework of CRF
in work [10], but transfers the probabilistic algorithms to deterministic algorithms. Noting that probabilistic
algorithms are main targets of subversion attacks, this modification will significantly weaken the assumption
that a CRF is a trusted module.

Unlike the existing CRFs which need to generate randomness during every run of protocol, our CRF only
requires a small amount of randomness as its keys in the initial phase. The keys should remain confidential
to the protocol parties, however, may be a little surprising, they are unnecessary to stay secure against
external adversaries. Such property provides us with a possible operation pattern of CRF, i.e., injecting a
public randomness into a CRF, after the implementations of protocol parties are deployed.

We achieve such a deterministic CRF by replacing the coins in the former CRFs, via hashing input mes-
sages along with the CRF key. Observing that even if being subverted, an implementation of protocol party
should still ensure its output to have high min-entropy, otherwise it can be detected from its specification
easily. Taking use of this point, we prove that for both subverted implementations and external adversaries,
the input of the hash function is inaccessible, thus, the acquired coins can serve as uniform randomness.

1.2 Related Work

Post-Snowden Cryptography. The notion of kleptography was introduced by Young and Yung in a series
of researches [18,19,20,21]. They considered the scenario where implementations of cryptographic algorithms
are maliciously designed by adversaries. They also designed several detailed attacks aimed at some commonly
used schemes such as RSA, Elgamal, Diffie-Hellman key-exchange protocol, et al.

Bellare, Paterson and Rogaway [4] formally established the security model for encryption schemes under
subversion attacks. This model consists of a pair of games, the surveillance game and the detection game,
to characterize the advantage of a surveillant and the probability of detecting a subverted implementation.
Work [9] and work [3] made partial progresses on the model in work [4], to adopt to several special cases such
as input-trigger attacks. Using a similar framework, Ateniese, Magri and Venturi [2] formulated the security
model for signature schemes. Russell et al. [16] proposed the notion of cliptography. They introduced an
entity named “watchdog” which checks all implementations provided by an adversary. If all implementations
agreed by the watchdog could run without any difference to the specification even from the view of the
adversary itself, then we say the scheme is stego-freeness.

A series of defending strategies have been proposed against the subversion attack. Russell et al. [17] gave
the idea of split-program methodology, dividing one algorithm into several components. All implementations
with respect to the components are probably subverted and modeled as blackboxes, but users could ensure

3

the security of the whole system with the help of the watchdog’s checking and a trusted amalgamation.
Fischlin and Mazaheri [11] presented a defending strategy named “self-guarding protocol”. They assumed
that users can set up a secure initial phase for the protocol, in which a number of randomness are generated,
and all algorithms executed after the initial phase are designed to be deterministic. Ateniese et al. [1] showed
how to correct subverted implementations using a public (secure) randomness generator which is accessible
to both users and adversaries. Li, Liu and Zhang [13,14] proposed a defending strategy where users could
construct a system using implementations from multiple sources. When multiple adversaries are isolated [13]
or only able to communicate in a limited way [14], users can take certain designs to achieve a secure system
against all adversaries, only using untrusted implementations.

Cryptographic Reverse Firewall. The notion of cryptographic reverse firewall (CRF) was first pro-
posed by Mironov and Stephens-Davidowitz [15]. They characterized a robust CRF by three properties:
functionality-maintaining, security-preserving and exfiltration-resistance. To demonstrate the achievability
of this definition, they also showed how to convert an arbitrary protocol into a protocol with exfiltration-
resistant reverse firewalls for all parties.

Dodis, Mironov and Stephens-Davidowitz [10] researched the security of message-transmission protocols
under subversion attacks. They designed a CRF for a type of interactive and concurrent CCA-secure message-
transmission. Chen et al. [8] extended the notion of smooth projective hash function (SPHF) to malleable
smooth projective hash function, based on which they proposed a general construction of CRF for some
widely used cryptographic protocols. Especially, considering conventional oblivious transfer (OT) protocol
is not compatible with the above modular way of CRF construction, they developed a new OT framework
from graded rings and showed how to construct OT-CRFs by modifying the malleable SPHF framework.

Universal Composition. First proposed by Canetti [5], universal composition is a general framework
to describe cryptographic protocols and analyze their security in complex environments. Canetti defined the
security of a protocol by the indifference between an execution of the real protocol with an adversary, and an
execution of the ideal functionality with a PPT simulator. Within this framework, protocols are guaranteed
to maintain their security in any context, even in the presence of an unbounded number of arbitrary protocol
sessions that run concurrently in an adversarially controlled manner.

The composition theorem in work [5] assumed the composed protocol instances have disjoint internal
states and are independent completely. To relax this restriction, Canetti and Rabin [7] extended the frame-
work and proposed the universal composition with joint state (JUC). This work considered the case where
different protocol instances may have joint state and randomness. Following the line of work [7], Canetti et
al. [6] further explored the composition theorem in the scenario where we cannot ensure that the set-up phase
of a protocol provides the expected security guarantee. Hofheinz and Shoup [12] proposed a new framework
named GNUC, which deviate from UC in several important aspects such as the formalization of protocols
and the notion of corruptions.

Organization. Section 2 introduces the main notations and preliminaries. Section 3 presents a formal descrip-
tion of protocols, and gives a definition of CRFs from a new prospective. Section 4 presents the composition
theorem of protocol instances equipped with a CRF. Section 5 demonstrates that the new definition implies
the current one. Section 6 presents a construction of deterministic CRF under the new definition.

2 Preliminary

2.1 Notations

We use s
$← S to denote that s is a uniformly random element in set S. U` denotes a `-bit uniformly random

string. [1, r] is short for set {1, 2, · · · , r}. s1||s2 means the concatenation of two bit strings s1 and s2. poly(x)
represents a polynomial function of x. Let λ be a security parameter. negl(λ) is a negligible function in λ
if it vanishes faster than the inverse of any polynomial in λ. A(x) is a probabilistic polynomial-time (PPT)
algorithm if for any input x, A(x) terminates at most poly(|x|) steps. If the algorithm A outputs y upon the
input x, we write y ← A(x). We use G � A(·) to represent that A generates the implementation G.

4

For two distributions X = {Xλ} and Y = {Yλ}, let DistD(X ,Y)
def
=
∣∣Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]

∣∣. If
DistD(X ,Y) ≤ negl(λ) for all PPT algorithm D, we call X and Y are computational indistinguishable and
denote it by X ≈ Y for simplicity.

2.2 Proud-but-Malicious Adversary

“Proud-but-malicious” adversaries are the main issue considered in Post-Snowden cryptography. This kind of
adversary tries to compromise security by providing subverted implementations of cryptographic algorithms.
The important thing is that, a “proud-but-malicious” adversary prefers subversions to be “under the radar”
of any possible detection [17]. Russell et al. established the notion of watchdog W which is a PPT detector
aiming at distinguishing subversion from the specification. Concretely, for Gimpl � A(Gspec), and any PPT
watchdog W, we call A is a proud-but-malicious adversary against offline watchdog if∣∣Pr[WGimpl(1λ) = 1]−Pr[WGspec(1λ) = 1]

∣∣≤negl(λ).

Similarly, we call A is a proud-but-malicious adversary against online watchdog if∣∣Pr[WGimpl(τ) = 1]− Pr[WGspec(τ) = 1]
∣∣ ≤ negl(λ),

where τ denotes all the transcripts accessible to A in the same time. When W is clear, we simply say A is a
proud-but-malicious adversary. And for simplicity, in this paper we call it a PM-adversary.

2.3 The Current Definition of a CRF

The notion of cryptographic reverse firewall (CRF) was first proposed by Mironov and Stephens-Davidowitz [15].
A CRF is a trusted module sitting between a user’s computer and the outside world, intercepting all the
messages coming in and out. A formal description of CRF is presented in Definition 1

Definition 1. A cryptographic reverse firewall (CRF) is a stateful algorithm crf that takes as input its state
and a message, and outputs an updated state and a modified message. For simplicity, we do not write the
state of crf explicitly.

For a cryptographic reverse firewall crf and a party A = {receive, next, output}, where receive is the
function to receive messages from outside, next is the function to generate outputting message, and output
is the function to generate the final result of the protocol. The composed party A ◦ crf is defined as:

A ◦ crf def=
(
receiveA◦crf(σ,m) = receiveA(σ, crf(m)), nextA◦crf(σ) = crf(nextA(σ)), outputA◦crf(σ) = outputA(σ)

)
,

where σ denotes the state of the party A, and m denotes the transcript received.

According to work [15], a CRF is characterized by three properties: functionality-maintaining, security-
preserving, and exfiltration-resistance. Readers are referred to Appendix A for the formal definitions.

3 Security Model

Based on the notion of UC-emulation, this section presents a new definition of CRFs, which is totally differ-
ent from the current definition consisting of functionality-maintaining, security-preserving and exfiltration-
resistance. We first make a formal characterization of protocols in the view of the subversion attacks in
Section 3.1. Next, we state the deployment and operation of a CRF in Section 3.2. Based on the above
works, we present the security definition of a CRF in Section 3.3.

5

3.1 Protocol Framework

Our characterization of protocols mainly follows the idea in work [5], but with a deep simplification. We
simplify the model mainly because the intention of this paper concentrates on CRFs, rather than protocols
themselves. Thus, it is unnecessary to analyze a protocol in such a complicated way. The subversion attack
could be regarded as “inner attack”, i.e., an adversary compromises the security by corrupting the imple-
mentations inside a user’s system. Considering such a property, we divide a protocol into several inner parts
(main machines) and an external part (channel machine).

We consider an n-party protocol P, an adversary A and an environment E , all of which are modeled as
interactive Turing machines (ITMs). Each instance of ITM is labeled by a protocol identity fid, a party
identity pid and a session identity sid, which remain unchanged throughout. The messages transmitted
between instances of ITM are interpreted as a tuple:

(fid, sid, pids, pidr,m||ad, type).

pids and pidr are identities of the sender and the receiver, respectively. m||ad is the message and its associ-
ated data. type ∈ {“input”, “internal-output”, “output”, “backdoor”} is the label of the message; “input”
represents the initial input of the protocol from environment E ; “internal-output” represents the information
transmitted among machines of protocol P; “output” represents the final output of protocol P from party
πi to E ; “backdoor” is used to represent backdoor information come from the adversary, or disclosed to it.

We simplify the structure of a protocol in work [5] and define P only as a channel machine and several
main machines: P = {π1, · · · , πn, ch}. Formally,

– πi (i ∈ [1, n]) represents the program executed by each party in the protocol. πi receives information
from E in type of “input”, and returns information in type of “output”. πi also has interface with ch
to transmit messages in type of “internal-output”, and has interface with A to transmit messages in
type of “backdoor”. Especially, there is no direct interface between πi and πj (i, j ∈ [1, n]). All their
communication is via channel machine or adversaries.

– ch represents the message transmission during the execution of the protocol. Besides interacting with
πi, it is also accessible to the adversary A. For example, for an authenticated channel, when ch receives
(fid, sid, pidπi , pidch,m||“pidπi to pidπj”, “internal-output”), it sends (fid, sid, pidch, pidA,m||“pidπi to pidπj”,
“backdoor”) to A. After receiving (fid, sid, pidA, pidch, “ok”, “backdoor”) from A, it sends (fid, sid,
pidch, pidπj

, m||“pidπi
to pidπj

”, “internal-output”) to party πj .

3.2 Protocol Equipped with a CRF

Now we present the formalization of a cryptographic reverse firewall. A CRF is an interactive Turing machine
which intercepts and modifies all the messages sent between main machines πi and channel machine ch.
Especially, if the protocol is executed normally, the CRF seems “transparent”. A CRF is regarded as a trusted
model, saying, different with the protocol P, it should be executed honestly according to its specification
in any case. Another important difference between the CRF and machines of P is that a CRF instance is
designed to operate across multiple sessions or even multiple protocols, while every ITM instance of protocol
is corresponding to only one session.

Credibility and session-units. The adversary is not allowed to corrupt crf. All the messages transmit-
ted between πi and crf are inaccessible to the adversary. As a CRF operates across multiple sessions, we inter-
pret crf as a basic-program and several session-units. Every session-unit is marked by a triple (fid, sid, pid),
where fid and sid are protocol identity and session identity, and pid denotes the protocol party this unit
serves. The session-units store the relative information with respect to the corresponding session and party.

The authority to alarm. We allow CRFs to “alarm”. If a CRF perceives any abnormality of inputting
messages implying that the implementation of the protocol is likely to be subverted, the CRF is able to alarm
directly, and the whole protocol breaks off at the same time. To ensure the reasonability, the current definition
(see Appendix A) imposes an adversary with some special limitations, e.g., it must provide functionality-
maintaining implementations. Our design of “alarm” provides a possibility to remove these limitations and
solve the problem by CRF itself.

6

The notion of shell machine. To capture the feature of transparency of crf, we introduce the notion
of shell machine to characterize a protocol deployed with a CRF. A shell machine operates like a “shell”,
modifying the string fields of the identities of sender and receiver, when transmitting messages coming in or
out of the inner machine. We denote the shell of πi, ch and crf by SHπi

, SHch and SHcrf , respectively, and
denote the shelled machine of X by XSH. The shell machines operate as in Fig. 3. Formally:

– SHπi
filters all the messages coming in/out of πi. It changes outgoing messages (·, ·, pidπi

, pidch, ·, ·) to
(·, ·, pidπi , pidcrf , ·, ·), and forwards other messages without modification.

– SHch filters all the messages coming in/out of ch. It changes outgoing messages (·, ·, pidch, pidπi
,m||ad, ·)

to (·, ·, pidch, pidcrf ,m||ad||“to pidπi”, ·), and forwards other messages without modification.
– SHcrf filters all the messages coming in/out of crf. It changes outgoing messages (·, ·, pidcrf , pidπi

, ·, ·) to
(·, ·, pidch, pidπi , ·, ·), and changes outgoing messages (·, ·, pidcrf , pidch, ·, ·) corresponding to the session-
unit marked by (fid, sid, pidπi) to (·, ·, pidπi , pidch, ·, ·). It forwards other messages without modification.

Fig. 3. Operation of the protocol deployed with a CRF. The round arrows represent the transfer operations of shells.

Now we are ready to formalize the operation of cryptographic reverse firewall crf when it composed with
protocol P. Following the work [15], we use P ◦ crf to denote a the protocol P equipped with a CRF crf. The
cryptographic reverse firewall crf runs as follows:

– At the very beginning, the basic unit of crf is invoked.
– When perceiving any abnormality of the inputting messages, crf outputs (⊥,⊥, pidcrf , E , “alarm”, “output”),

and the protocol aborts.
– On receiving (fid, sid, pidπi

, pidcrf ,m||ad, “internal-output”) from a main machine, crf checks if there ex-
ists a session-unit marked as (fid, sid, pidπi

). If not, such a new session-unit is generated. Based on the in-
formation in the session-unit, crf generates the modifiedm′||ad′ and outputs (fid, sid, pidcrf , pidch,m

′||ad′,
“internal-output”).

– Similarly, on receiving (fid, sid, pidch, pidcrf ,m||ad, “internal-output”) from a channel machine, crf in-
terprets ad as ad∗||“to pidπj”, and checks if there exists a session-unit marked as (fid, sid, pidπj). If
not, such a new session-unit is generated. Based on the information in the session-unit, crf generates the
modified m′||ad′ and outputs (fid, sid, pidcrf , pidch,m

′||ad′, “internal-output”).
– On receiving messages in type of “backdoor”, crf handles it as above, and returns messages in type of

“backdoor”.

3.3 Define a CRF by UC-emulation

Based on the above works, we present the new definition of the security of a CRF. Post-Snowden cryptography
mainly focuses on the security of the implementations of cryptographic algorithms when they deviate from
the corresponding specifications. Such analysis is meaningless if the specifications themselves do not satisfy

7

the required security. Thus, all works in this paper are based on the premise that the protocol specification
is secure, saying, it UC-emulates an ideal functionality F .

The basic idea of the security definition of CRF is that, a CRF can either detect subverted implementa-
tions, or it could correct a subverted protocol to UC-emulate the ideal functionality F . We use X̂ to denote
the subverted implementation of X. We first present the game of protocol execution in conventional settings.
Readers are referred to Fig. 4 for the game of protocol execution. The machines in dashed boxes may be
subverted by adversary A, and the solid lines represent direct communications between ITMs. Concretely,

1. E is the first Turing machine to be invoked.
2. E invokes the adversary A.
3. E generates the inputs of the protocol, and invokes the target protocol P.
4. The target protocol ends when the main machines return their outputs to E .
5. E outputs its one bit decision EXECP,A,E .

Fig. 4. Execution of protocol in conventional settings. Fig. 5. Execution of protocol equipped with a CRF.

As a special case, when the target protocol is an ideal functionality F , and the adversary is replaced by a
simulator S, we denote the output of E by EXECF,S,E . The security of protocol P in the conventional setting
is defined based on the notion of “UC-emulation” [5]. Formally,

Definition 2. Let P be a PPT protocol and F be an ideal functionality. We say that P UC-emulates F , if
for any PPT adversary A, there exists a PPT simulator S such that for any PPT environment E, we have

EXECF,S,E ≈ EXECP,A,E .

That is, for any input, the probability that E outputs 1 after interacting with A and P differs by at most a
negligible amount from the probability that E outputs 1 after interacting with S and F .

Next, we formulate the game of a protocol in the subversion setting. The main difference here is that the
implementations of the target protocol are provided by an adversary, and the protocol is executed with the
protection of a CRF. Readers are referred to Fig. 5 for detail. Concretely,

1. E is the first Turing machine to be invoked.
2. E invokes the adversary A.
3. A generates the subverted implementations P̂ = {π̂1, · · · , π̂n, ch}, and submits them to E .

4. E generates the inputs of the protocol, and invokes the target protocol P̂ ◦ crf.
5. The target protocol ends when crf alarms or the main machines return their outputs to E .
6. E outputs its one bit decision EXECP̂◦crf,A,E .

Before presenting the security definition of a CRF, we define the notion of robust CRFs, which refers to
that the CRF hardly alarms if all the implementations of protocol obey the specification honestly. Formally,

8

Definition 3. A cryptographic reverse firewall crf is robust3, if for any PPT adversary A and PPT envi-
ronment E, crf alarms only in a negligible probability when combines with the specification {π1, · · · , πn} of
protocol P.

Now we are prepared for the definition of the security of a CRF.

Definition 4. Let P be a PPT protocol which UC-emulates an ideal functionality F in conventional setting.
We say a cryptographic reverse firewall crf guards P for F , if (1) crf is robust; (2) for all the PPT adversary

A, the combined protocol P̂ ◦ crf aborts with crf alarming in a non-negligible probability, or there exists a
PPT simulator S such that for any PPT environment E, we have:

EXECF,S,E ≈ EXECP̂◦crf,A,E .

4 Universal Composition of Protocols Deployed with a CRF

As we expect a CRF to serve multiple protocols and multiple sessions, it is necessary to analyze the compo-
sitional conditions of protocols with a CRF. Without an explicit formal theorem about composition, even if
we prove a CRF is able to guard every protocol session independently, its security in practical application is
still unguaranteed. Fortunately, Canetti et al. [6] have proposed the notion of universally composable security
with a global setup, which could provide a reference to our work, although their work focused on another
topic.

Before presenting our composition theorem, we first introduce the notions of CRF-subroutine respecting
and honesty CRF. These two properties actually achieve that any two sessions have no communication except
using a same CRF, which is a little similar to the G-subroutine respecting proposed by Canetti et al. [6].

Definition 5. A protocol P is CRF-subroutine respecting, if for the instance of P labeled as fidP and sids,
the shell machines SHπi reject all the incoming messages (fid, sid, ·, ·, ·, ·) that {fid, sid} 6= {fidP , sids}.

Definition 6. A CRF is called honest if it does not change the protocol identity fid and session identity
sid in the transmitted messages.

Assume the ideal functionality F is a subroutine of protocol ρ. ρF→P̂◦crf denotes the protocol which is
acquired by replacing the F in ρ by P̂ ◦ crf. Now we are prepared to present the composition theorem.

Theorem 1. Let ρ and P be PPT protocols, and F be an ideal functionality. If an honest reverse firewall

crf guards P for F , and P is crf-subroutine respecting, then for any PPT adversary A, ρF→P̂◦crf aborts
with crf alarming in a non-negligible probability, or there exists a PPT adversary S such that for any PPT
environment E,

EXECρ,S,E ≈ EXECρF→P̂◦crf ,A,E .

Proof. We need only consider the case when crf does not alarm.
Following the idea in work [5], we take the language of “dummy adversary” to express the CRF’s property

in a substitutive way. A dummy adversary D just acts as a “transparent channel” between E and the machines
in protocol. It forwards the backdoor type messages from E to main machines of protocol P, and forwards
the returned message from protocol machines to E . Work [5] provides a rigorous proof that such adjustment
from adversary A to “dummy adversary” D makes no change to the essence of the protocol security. That is
to say, if there exists a PPT environment E being able to distinguish between an execution of protocol P̂ ◦crf
with A, and an execution of ideal functionality F with any PPT simulator S, we can construct another PPT
environment E ′ being able to distinguish between an execution of protocol P̂ ◦ crf with dummy adversary D,
and an execution of ideal functionality F with any PPT simulator SD. Of course, if there is no such E , such
E ′ does not exist either .

3 Note that the definition of “robust” in this paper is totally different from the notion of “robust” in work [15].

9

Following the assumption in Theorem 1, we have that if crf does not alarm, for dummy adversary D and
any PPT environment EP , there exists a PPT SD such that

EXECF,SD,EP ≈ EXECP̂◦crf,D,EP . (1)

Next, we construct a simulator S out of SD, such that for any PPT environment E and adversary A,

EXECρ,S,E ≈ EXECρF→P̂◦crf ,A,E .

Readers are referred to Fig. 6 for the operation of S. Concretely, we divide ρF→P̂◦crf into P̂ ◦ crf and the

rest part of ρ (we use ρ′ to denote it). The adversary A is geared to interact with ρF→P̂◦crf . S channels
the communication between A and the environment E , and the communication between A and ρ′ without
any change. The important operation of S is that the communication between A and every instance of F
is “pipelined” with an instance of SD, saying, messages generated by A aimed for P̂ ◦ crf is sent to SD
as messages from the environment. Incoming messages from F to SD are forwarded without any change.
Outputs of SD to environment are forwarded to A as messages from P̂ ◦ crf.

Fig. 6. Construction of simulator S in the proof of Theorem 1. Full lines denote direct communication between ITMs.

Now we demonstrate that the above construction of S is available. Based on the “dummy adversary”
setting, the adversary A run by S behaves exactly like the environment that SD expects. We assume that
there exists an environment E which is able to distinguish an execution of {S, ρ} and an execution of

{A, ρF→P̂◦crf}, then we can deduce another environment EP which is competent to violate Formula (1).
Assume that ρ involves n instances of F , we design n+ 1 hybrids of the game. Concretely,

– Game 0: E aims at distinguishing between a execution of {S, ρ} and an execution of {A, ρF→P̂◦crf},
where S is exactly like the case in Fig. 6.

– Game i + 1: is same with Game i except that an instance of F in ρ is replaced by P̂ ◦ crf, the
corresponding SD connected with such F in S is replaced by D.

It is straightforward that E ’ advantage in Game n equals to 0, as the two objects for judging are consistent
completely. If there exists an environment E being able to distinguish an execution of {S, ρ} and an execution

of {A, ρF→P̂◦crf} with a non-negligible probability, there must exists a pair of game Game i and Game i+1,
in which E ’s outputs are different in a non-negligible probability.

As shown in Fig. 7, we design EP which invokes environment E , adversary A, the caller part of protocol
ρ′, i executions of D associated with P̂ ◦crf, and (n−i−1) executions of SD associated with F . The adversary

A and ρ′ just operate as normal, except that one pair of their subroutine, i.e., an execution of {D, P̂ ◦ crf},
or an execution of {SD,F}, is chosen randomly. If E succeed in the game to distinguish {A, ρF→P̂◦crf} and
{S, ρ} (or its hybrid), EP outputs 1; Otherwise EP outputs 0. In this case, if EP deals with {SD,F}, E is

operates in Game i; Else if EP deals with {D, P̂ ◦ crf}, E actually operates in Game i + 1. Thus, if E ’s
outputs are different with a non-negligible probability when in Game i and Game i + 1, EP is able to
distinguish {SD,F} and {D, P̂ ◦ crf}. This is contradiction to Formula (1).

10

Fig. 7. Construction of EP in the proof of Theorem 1. The lines denote direct communication between ITMs. If there

exists a PPT E in the Fig. 6 which is able to distinguish the pair {S, ρ} and {A, ρF→P̂◦crf}, we can construct a EP
in this figure to violate the security property of crf, i.e., make different output in non-negligible probability when
operating in case (a) and case (b).

5 From the New Definition to the Current Definition

In this section we demonstrate that the new definition actually implies the current one. This means that the
new definition does not change the basic intuition of CRF, while characterizing the expected properties of a
CRF under the idea that “guarding a corrupted system with the minimum trusted module”.

For simplicity, here we only consider the PM-adversaries (readers are referred to Section 2.2 for details).
The reason for this simplification is that we have allowed a CRF to alarm, in some sense, a CRF can serve as
an online watchdog, and implementations provided by adversaries other than PM-adversaries can be easily
detected. In this section, we will prove that our definition implies the current definition, that is to say,
considering typical subversion attacks, the new definition is at least as strong as the current one. Formally,

Theorem 2. If a CRF guards protocol P as defined in Definition 4, then it also satisfies functionality-
maintaining, security-preserving, and exfiltration-resistance for PM-adversaries.

Proof. It is straightforward that for a PM-adversary, the probability that the CRF alarms is negligible.
Otherwise we can simply recognize a subverted implementation when the CRF alarms, as it only alarms
with a negligible probability when combined with unsubverted implementations as defined.

The functionality and security of a protocol are defined by the indifference between an execution of
protocol P̂ ◦ crf with A, and an execution of ideal functionality F with S. Now that if a CRF is able to
ensure such indifference despite the implementations are corrupted by the adversary, it is straightforward
that this CRF satisfies functionality-maintaining and security-preserving.

Assume that there exists a PM-adversary A being able to break the exfiltration-resistance of a CRF. Then
we can build a PPT adversary B and environment E , for which no PPT simulator S achieves EXECF,S,E ≈
EXECP̂◦crf,B,E , which means the CRF does not guards P. Concretely, when E operates with B and P ◦ crf:

1. E invokes A to get the subverted implementation P̂ = {π̂1, · · · , π̂n, ch}.
2. E generates b

$← {0, 1}. If b = 1, P∗ ← P̂; else P∗ ← P.

3. E invokes B and forwards P∗ to B. B submits them back to E . E invokes P∗ ◦ crf.
4. B acquires all transcripts of π̂i, and forwards them back to E .

5. E forwards the transcripts to A, and acquires A’s final output b′.

6. E returns its final output (b′ = b).

11

Thus, if E interacts with {P∗ ◦ crf,B}, according to the definition of exfiltration-resistance (Appendix A)
Pr[b′ = b] = AdvexfA,crf(λ) + 1/2.

Now we consider the case where E interacts with {F ,S}. Since A is proud-but-malicious, P̂ and P are
indistinguishable to any PPT simulator S. Thus b has no influence on the returned information from F and
S, i.e., Pr[b′ = b] = 1/2. Thus, we have that for any PPT simulator S,

Pr[EXECF,S,E 6= EXECP∗◦crf,B,E] ≥ AdvexfA,crf(λ),

which completes the proof that the CRF is exfiltration-resistant for PM-adversaries.

6 Construction of a Deterministic CRF

This section presents a detailed construction of CRF. To the best of our knowledge, all of the existing
CRFs need to generate a new randomness, to deal with every randomness generated by the underlying
protocol. This implies a assumption that a CRF is competent to produce the same amount of randomness
to the protocol being protected. Those designs could be regarded as transferring a tough task from users’
computers to CRFs.

Our basic framework of CRF construction is more reasonable than existing ones. It takes the idea that
although the CRF is still assumed to be unsubverted, it is not expected to generate such a large amount of
randomness. Instead, a CRF just needs to get a small amount of fresh and trusted randomness as its keys
during the initial phase, and all the following operations are designed to be deterministic. Further more, our
construction can even achieve that the CRF’s key is allowed to opened to external adversaries, as long as
it stays confidential to the implementations of inner protocol parties. In such a situation, the credibility of
a CRF is much easier to be realized, as the main source of the risk, probabilistic modules, are shrunken as
much as possible. We observe that although an implementation of a probabilistic algorithm is subverted, its
output should still have high min-entropy. Otherwise, this subverted implementation will easily be detected
in black-box testing. In this case, a CRF can simply alarm when observes a collision, causing the protocol to
break off. We take use of this point to achieve our design, which guards a protocol merely using deterministic
algorithms, including a module serving as an online watchdog [16].

In this section we only consider the CRF for a class of two-round message-transmission protocol, but
under the UC-based definition, the CRF is designed in an extendible setting. Our construction is based
on the framework proposed by work [10], which presents a general CRF construction method for message-
transmission protocols based on public encryption schemes with special properties.

Preliminary. In order to present a comprehensible introduction of our construction, it is necessary to
present several basic notions as a foundation. Considering the page limitation, we put them to appendix.
Appendix B.1 introduces a two-round message-transmission protocol based on public-key encryption. Ap-
pendix B.2 reviews the notion of rerandomizable encryption and key malleability. Appendix B.3 presents a
brief introduction of the CRF construction in work [10].

Our CRF serves for the message-transmission protocol presented in Appendix B.1. We also require that
the involved public-key encryption scheme should satisfy (1) rerandomizable, with rerandomize function
Rerand : PK×C ×{0, 1}` → C; (2) key malleable, with rerandomize function KeyMaul : PK×{0, 1}κ → PK,
and CKeyMaul : C × {0, 1}κ → C.

The ideal functionality. In order to analyze the CRF in the new definition, we need to specify the
ideal functionality F corresponding to the message-transmission protocol with an authenticated encryption
channel. On receiving the message “ready” from Bob, F informs simulator S, and transfers “ready” to
Alice after getting S’s agreement. On receiving a message m from Alice, F informs S, and after receiving a
returned agreement, F forwards m to Bob. Readers are referred to Fig. 8 for details.

Construction. The significant progress of our construction comparing to the design in Appendix B.3
is the acquirement of the coins for rerandomization. We extract r1 and r2 from the fixed key of CRF along
with the inputs via RO. This transfers the CRF from a probabilistic algorithm to a deterministic one. We
present the formal CRF’s operation for P in Fig. 10, and readers are referred to Fig. 9 for a sketch map.

12

1. Upon receiving “ready” from Bob, F sends “ready” to the simulator S.
2. After receiving “ready-agree” from S, F sends “ready” to Alice.
3. Upon receiving m from Alice, F sends “transmit” to the simulator S.
4. After receiving “transmit-agree” from S, F sends m to Bob.

Fig. 8. Operation of F for message-transmission protocol P

Fig. 9. A sketch map for CRF construction

Remark. In logical sense, we characterize the CRF as a single part as in Section 3.2, but actually in the reality,
the CRF is realized by several modules which composed with different protocol parties. It is unpractical and
unnecessary to require all the modules to acquire a same key. Thus, in the construction of Fig. 10, the CRF
is injected with two keys sk1 and sk2, to enable the two parts composed with Bob and Alice, respectively.

We claim that in our construction, the CRF’s key sk1 and sk2 can be opened to the adversary, as

long as it is uniformly random to the subverted parties Âlice and B̂ob. This property provides us with a
possible operation pattern of CRF, i.e., injecting public randomness into the CRF after the deployment of
implementations of protocol parties.

Theorem 3. The CRF in Fig. 10 guards P for F , if H1 and H2 are modeled as random oracles.

Proof. We first demonstrate that crf is robust. Given that PE is a probabilistic encryption scheme, for

(pk0, sk0), (pk1, sk1) ← KeyGen(λ) and m0,m1
$← M, where M is the plaintext space, we have Pr[pk0 =

pk1] ≤ negl(λ), and Pr[Encpka(mb) = Encpkc(md)] ≤ negl(λ) (a, b, c, d ∈ {0, 1} and (a, b) 6= (c, d)). As crf only
alarms when the inputting messages is not consistent to the standard form, or there is collision among the
input public-keys or ciphertexts, when combining with the specification, it alarms in a negligible probability.

Thus, we only need to consider the case where CRF does not alarm. Following the proof of Theorem 1,
here we still take the method of “dummy adversary”, saying, we will design a PPT simulator S such that any
PPT environment E is unable to distinguish an execution of protocol P̂ ◦ crf with dummy adversary D, and
an execution of ideal functionality F with S. Work [5] has presented a complete proof that such adjustment
from adversary to dummy adversary actually makes no influence to the security property of protocols.

We construct a PPT simulator S which takes the following strategy in a session.

1. On receiving “ready” from F , S generates (pk∗, sk∗) ← KeyGen(1λ), passes pk∗ to E , and sends
“ready-agree” to F .

2. On receiving “transmit” from F , S generates Rerandpk∗(Enc(0), U`), passes it to E , and sends “transmit-agree”
to F .

We present the following hybrids of the CRF:

13

Cryptographic reverse firewall for protocol P

Initial phase(sk1, sk2) \\sk1
$← {0, 1}s, sk2

$← {0, 1}s
Establish two empty list L1 and L2

Unavaliable message(·)
When receiving messages not consistent to the forms of outputs from the specification, alarm

Key malleation (fidP , sidn, pidBob, pidcrf , pk||“public-key to Alice”, “internal-output”)
Generate a session-unit marked as (fidP , sidn, pidBob)
If pk ∈ L1, alarm
Else
L1 ← L1 ∪ {pk}, r1 ← H1(sk1||pk), store r1 in the session-unit.
pk′ ← KeyMaul(pk, r1)
Output (fidP , sidn, pidcrf , pidch, pk

′||“public-key to Alice”, “internal-output”)

Receive key (fidP , sidn, pidch, pidcrf , pk
′||“public-key to Alice”, “internal-output”)

Generate a session-unit marked as (fidP , sidn, pidAlice)
Record pk′ in the session-unit
Output (fidP , sidn, pidcrf , pidAlice, pk

′||“public-key to Alice”, “internal-output”)

Ciphertext rerandomization (fidP , sidn, pidAlice, pidcrf , c||“cipertext to Bob”, “internal-output”)
If there is no session-unit marked as {fidP , sidn, pidAlice}, return ⊥
Else

Invoke the public-key pk′ from the session-unit marked as (fidP , sidn, pidAlice)
If c ∈ L2, alarm
Else
L2 ← L2 ∪ {c} , r2 ← H2(sk2||c)
c′ ← Rerandpk′(c, r2)
Output (fidP , sidn, pidcrf , pidch, c

′||“cipertext to Bob”, “internal-output”)

Inverse key malleation (fidP , sidn, pidch, pidcrf , c
′||“ciphertext to Bob”, “internal-output”)

If there is no session-unit marked as (fidP , sidn, pidBob), returns ⊥
Else

Invoke r1 from the session-unit marked as (fidP , sidn, pidBob)
c′′ ← CKeyMaul(c′, r1)
Output (fidP , sidn, pidcrf , pidBob, c

′′||“cipertext to Bob”, “internal-output”)

Fig. 10. Operation of crf for protocol P

14

– Hybrid 0: It is identical to Fig. 10.
– Hybrid 1: It runs in the same way as Hybrid 0, except that r1 in Key malleation and Inverse key malleation

are substituted by r′1
$← {0, 1}κ.

– Hybrid 2: It runs in the same way as Hybrid 1, except that r2 in Ciphertext rerandomization is substi-

tuted by r′2
$← {0, 1}`.

– Hybrid 3: It runs in the same way as Hybrid 2, except that in Key malleation, pk′ is replaced by pk∗,

and (pk∗, sk∗)← KeyGen(1λ).
– Hybrid 4: It runs in the same way as Hybrid 3, except that in Ciphertext rerandomization, c′ is replaced

by c∗ ← Rerandpk′(Encpk′(0), U`).

We denote the environment E ’s output after interacting with D and protocol equipped Hybrid i as
EXECP◦Hybi,D,E , and the corresponding advantage as

AdviE(λ) =
1

2

∣∣Pr[EXECF,SP ,E = 1]− Pr[EXECP◦Hybi,D,E = 1]
∣∣.

Lemma 1. For any PPT environment E, we have∣∣∣Adv1E(λ)− Adv0E(λ)
∣∣∣ ≤ n1

2s
+
n2
2δ
,

where n1 and n2 are numbers of queries from the subverted implementation and the environment/dummy

adversary. δ is the min-entropy of public-key pk produced by the potentially subverted party B̂ob.

Proof (of Lemma 1). Based on the definition of RO, Hybrid 1 only differs from Hybrid 0 when

– Event 1: subverted implementation submits sk1||pk to RO;
– Event 2: environment E or dummy adversary D submits sk1||pk to RO.

As sk1 is generated at the initial phase of CRF, thus, it stays uniformly random to the implementations of
protocol parties. So we have

Pr[Event 1] ≤ n1
2s
.

Now we explore the probability of Event 2. We claim that although the protocol party Bob is subverted,
its output pk should still reach a high min-entropy, otherwise, crf will alarm in a non-negligible probability.
Concretely, if we assume that

max
pk∗

Pr[pk = pk∗, (pk, sk1)← K̂eygen(λ)] = 2−δ =
1

ploy(λ)
,

then, within q rounds of the protocol, the probability of crf alarms:

Pr[crf alarms] ≥ 1

2
q(q − 1) · 2−2δ =

q(q − 1)

2 · ploy2(λ)

Thus, if crf only alarms in a negligible probability, we have δ ≤ negl(λ). In this case,

Pr[Event 2] ≤ n22−δ < negl(λ).

So we have ∣∣∣Adv1E(λ)− Adv0E(λ)
∣∣∣ ≤ Pr[Event 1] + Pr[Event 2] <

n1
2s

+
n2
2δ
. (2)

Based on the same idea, we present Lemma 2 without detailed proof.

15

Lemma 2. For any PPT environment E, we have∣∣∣Adv2E(λ)− Adv1E(λ)
∣∣∣ ≤ n3

2s
+
n4
2σ
,

where n3 and n4 are numbers of queries from the subverted implementation and the environment/dummy

adversary, respectively; σ is the min-entropy of ciphertext c produced by the potentially subverted party Âlice.

Based on the property of key malleable encryption in Definition 11, when the coin used in KeyMaul is
a uniformly randomness, the output key from KeyMaul is uniformly random distributed over the public-key
space. Thus, we could present Lemma 3 directly,

Lemma 3. For any PPT environment E, we have Adv3E(λ) = Adv2E(λ).

Based on the property of rerandomizable encryption in Definition 10, when the coin used in Rerand is a uni-
formly randomness, (c;Rerandpk(c, Uκ)) is computationally indistinguishable from (c;Rerandpk(Encpk(0), Uκ)),
Thus. we could present Lemma 4 directly,

Lemma 4. For any PPT environment E,
∣∣Adv4E(λ)− Adv3E(λ)

∣∣ ≤ negl(λ).

It is obviously that Adv4E(λ) = 0. Summing up Lemma 1-4, we reach the conclusion

EXECF,SP ,E ≈ EXECP◦crf,D,E ,

which means that (S,F) makes an ideal emulation to (D, P̂ ◦ crf).

Acknowledgment. The research in this paper is mainly done when the first author (Geng Li) was a Ph. D
candidate in School of Cyber Science and Technology, Beihang University. This work is partly supported by
the National Natural Science Foundation of China (61972017) and the Fundamental Research Funds for the
Central Universities (YWF-21-BJ-J-1040).

References

1. Ateniese, G., Francati, D., Magri, B., Venturi, D.: Public immunization against complete subversion without
random oracles. In: ACNS. vol. 11464, pp. 465–485 (2019)

2. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In: ACM CCS. pp. 364–375 (2015)
3. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: Strongly undetectable algorithm-

substitution attacks. In: ACM CCS. pp. 1431–1440 (2015)
4. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against mass surveillance. In:

CRYPTO. vol. 8616, pp. 1–19 (2014)
5. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS. pp. 136–145

(2001)
6. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: TCC. vol. 4392,

pp. 61–85 (2007)
7. Canetti, R., Rabin, T.: Universal composition with joint state. In: CRYPTO. vol. 2729, pp. 265–281 (2003)
8. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse firewall via malleable smooth

projective hash functions. In: ASIACRYPT. vol. 10031, pp. 844–876 (2016)
9. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security against mass surveillance. In:

FSE. vol. 9054, pp. 579–598 (2015)
10. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse firewalls - secure communi-

cation on corrupted machines. In: CRYPTO. vol. 9814, pp. 341–372 (2016)
11. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm substitution attacks. In: CSF.

pp. 76–90 (2018)
12. Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. J. Cryptol. 28(3), 423–508 (2015)
13. Li, G., Liu, J., Zhang, Z.: Security against subversion in a multi-surveillant setting. In: ACISP. vol. 11547, pp.

419–437 (2019)

16

14. Li, G., Liu, J., Zhang, Z.: A more realistic analysis of mass surveillance - security in multi-surveillant settings.
IET Information Security. 2020, 643–651 (2020)

15. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: EUROCRYPT. vol. 9057, pp. 657–686
(2015)

16. Russell, A., Tang, Q., Yung, M., Zhou, H.: Cliptography: Clipping the power of kleptographic attacks. In: ASI-
ACRYPT. vol. 10032, pp. 34–64 (2016)

17. Russell, A., Tang, Q., Yung, M., Zhou, H.: Generic semantic security against a kleptographic adversary. In: ACM
CCS. pp. 907–922 (2017)

18. Young, A.L., Yung, M.: The dark side of “black-box” cryptography or: Should we trust capstone? In: CRYPTO.
vol. 1109, pp. 89–103 (1996)

19. Young, A.L., Yung, M.: Kleptography: Using cryptography against cryptography. In: EUROCRYPT. vol. 1233,
pp. 62–74 (1997)

20. Young, A.L., Yung, M.: The prevalence of kleptographic attacks on discrete-log based cryptosystems. In:
CRYPTO. vol. 1294, pp. 264–276 (1997)

21. Young, A.L., Yung, M.: Malicious cryptography: Kleptographic aspects. In: CT-RSA. vol. 3376, pp. 7–18 (2005)

A The Current Definition of a CRF

Mironov and Stephens-Davidowitz [15] characterized the expect properties of a CRF by functionality-
maintaining, security-preserving and exfiltration-resistance.

Definition 7. (Functionality-maintaining) For any CRF crf and any party A, let A ◦ crf1 = A ◦ crf, and for
k ≥ 2, A ◦ crfk = (A ◦ crfk−1) ◦ crf. For a protocol P that satisfies functionality requirement FR, for any
polynomial bounded k > 1, if A ◦ crfk maintains FR for A in P, we say that crf maintains FR for A in P.

PA→A◦crf denotes the protocol in which party A is replaced by the combination of crf and a subverted

party A. Besides, we denote a functionality-maintaining party by Â and an arbitrary subverted party by A.

Definition 8. (Security-preserving) For a protocol P that satisfies security requirements SR, and a CRF
crf, we say that

– crf strongly preserves SR for A in P if the protocol PA→A◦crf satisfies SR;

– crf weakly preserves SR for A in P if the protocol PA→Â◦crf satisfies SR.

The exfiltration-resistance is defined based on the leakage game which is presented in Fig. 11. We assume
the protocol has two parties A and B. The advantage of an adversary A in Game LEAK is defined as

AdvLEAKA,crf (λ)
def
=
∣∣∣Pr [LEAK(P,A,B, crf, λ) = 1]− 1

2

∣∣∣.

Game LEAK (P,A,B, crf, λ)

(stA,A,B, I)← A(1λ)

b
$← {0, 1}

IF b = 1, A∗ ← A ◦ crf
ELSE, A∗ ← A ◦ crf
Γ ∗ ← PA→A∗,B→B(I)

b∗ ← A(Γ ∗, stB)
RETURN (b = b∗)

Fig. 11. The leakage game LEAK. stA and stB are the state of A and B. I is a valid input for P, and Γ ∗ is the
transcript produced by protocol PA→A∗,B→B(I).

17

Definition 9. (Exfiltration-resistance) For a protocol that satisfies functionality requirements FR and a
reverse firewall crf, we say that

– crf is strongly exfiltration-resistant for party A against party B in the protocol P if for any PPT adversary
A, AdvLEAKA,crf (λ) is negligible in the security parameter λ; and

– crf is weakly exfiltration-resistant for party A against party B in the protocol P if for any PPT adversary
A, AdvLEAKA,crf (λ) is negligible in the security parameter λ provided that A maintains FR for party A.

In the special case where B is empty, we say that crf is exfiltration-resistant against eavesdroppers.

B CRF Construction in Work [10]

B.1 Two-round Message-Transmission Protocol

Let PE = (Keygen,Enc,Dec) be a public-key encryption scheme. Keygen : 1λ→ (PK,SK) is key generation
algorithm, where PK and SK are public-key space and secret-key space, respectively. Enc : PK×M→ C is
encryption algorithm, whereM and C are plaintext space and ciphertext space, respectively. Dec : SK×C →
M is decryption algorithm. We define the correctness of PE as: for any m ∈ M and (pk, sk)←Keygen(1λ),
we have Decsk(Encpk(m)) = m. And we define the CPA-security of PE as for any adversarially chosen pair
of plaintexts (m0,m1), (pk,Encpk(m0)) and (pk, Encpk(m1)) are computational indistinguishable.

The basic form of a two-round public-key based message-transmission protocol is like this: Bob generates
(pk, sk)← KeyGen(1λ), and sends pk to Alice. Alice encrypts massage m by c← Encpk(m). After getting c,
Bob decrypts it via m← Decsk(c).

B.2 Rerandomizable Encryption and Key Malleability Encryption

Rerandomizable encryption refers to the public-key encryption whose ciphertexts can be rerandomized to a
new one, without bringing influence to the normal decryption. Formally,

Definition 10. [10] A public-key encryption scheme is rerandomizable if there is a PPT algorithm Rerand :
PK × C × {0, 1}κ → C, for any ciphertext c such that Decsk(c) 6=⊥, we have: (1) Decsk(Rerandpk(c, Uκ)) =
Decsk(c), (2) (c;Rerandpk(c, Uκ)) is computationally indistinguishable from (c;Rerandpk(Encpk(0), Uκ)).

Key malleable encryption refers to encryption whose public-key can be transfered to a new one, and
there exists an efficient algorithm mapping ciphertexts under the new key-pair to ciphertexts under initial
key-pair. Formally,

Definition 11. [10] A public-key encryption scheme is key malleable if: (1) the output of KeyGen is dis-
tributed uniformly over the space of valid keys; (2) for each public-key pk there is a unique associated private
key sk; and (3) there is a pair of efficient algorithms KeyMaul and CKeyMaul that behave as follows. KeyMaul

takes as inputs a public-key pk and a randomness r
$← {0, 1}` and returns a new public-key pk′ whose distri-

bution is uniformly random over the public-key space. Let (sk, pk) be a private-key/public-key pair, and let
(sk′, pk′) be the unique pair associated with randomness r such that pk′ = KeyMaul(pk, r). Then, CKeyMaul
takes as inputs a ciphertext c and randomness r and returns c′ such that Decsk′(c) = Decsk(c′).

For example, Elgamal encryption is both rerandomizable and key malleable. Such encryption can also be
achieved via universal hash proof function [10].

18

B.3 CRF Construction for Two-round Message-Transmission Protocols

The work [10] presents a CRF construction, which takes the idea that rerandomizing the public-key and the
ciphertext by KeyMaul and Rerand, respectively. After receiving a processed ciphertext, the CRF adjusts it
to match the original secret key. Readers are referred to Fig. 12 for detailed formalization. Concretely,

1. When receiving pk from Bob, if pk is not in the standard form, CRF alarms; else, it generates r1
$←

{0, 1}` and pk′
$← KeyMaul(pk, r1), and outputs pk′ to channel.

2. When receiving c from Alice, if c is not in the standard form, CRF alarms; else, it generates r2
$← {0, 1}κ

and c′
$← Rerandpk′(c, r2), and outputs c′ to channel.

3. When receiving c′ from channel, if c′ is not in the standard form, CRF alarms; else, it invokes r1,
generates c′′ ← CKeyMaul(c′, r1), and outputs c′′ to Bob.

Fig. 12. CRF based on rerandomizable encryption

19

	UC-Secure Cryptographic Reverse Firewall–Guarding Corrupted Systems with the Minimum Trusted Module

