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From congruent number to elliptic curve

= Congruent number: We say a positive square-free integer n is congruent
number, if there is a right triangle whose area is n.

3

= n is congruent number & E,:y? = x3 — n“x has non-torsion point.

= Proposition: E,;: y* = x> — n“x has non-torsion point P = (x,y),y # 0 &

ar,s,A€E N, s.t. nA’= (r + s)(r — s)rs. Wecanseethatr +s, r—s, 7, s
may include factors of n.

= Proof:y? = x3 —nx © ny? = nx(x — n)(x + n) © n(m?y)? =
(nm)(mx)(mx + mn)(mx — mn). Then letr = mx, s = mn.




From congruent number to elliptic curve

= [t is natural to related a subproblem of integer factoring to the problem of
computing the Mordell-Weil group of elliptic curve E,,. But there are two
problems remaining.

= 1.If nis not a congruent number, how do we combine the Integer
Factorization with the elliptic curve?

= 2.Is there an efficient way to find the point?

= Solution1: Relate a greater family of elliptic curve.

= Solution2: The current approach is decent method and Heegner point method.



Previous works

= [n 2003, Burhanuddin and Huang considered the family of elliptic curves
Ep:y? = x3 — Dx where D = pq with p and g distinct prime integers, p =

q = 3 mod 16, and (g) = 1. Furthermore they speculated that the problem of

integer factorization and the problem of computing the rational points of the
elliptic curve can be polynomial-time equivalent.

= For the 2-Selmer group. They compute that S(¢) = {1,pq}, S'®) =
{1,p,—q, —pq}. At that time Rank(E) = 1, and the non-torsion points on Ej,
can factor D.




Previous works

= [n 2014 Li and Zeng studied a family of elliptic curve E,p,: y? = x> — 2Drx
where D = pq with p and g distinct prime integers, 2Dr is square-free. They
proved that there are infinitely many r > 1 such that E,,- has conjectural
rank one and v, (x(kP)) # v,(x(kP)) for any odd integer k, where P is the
generator of E,p,.. Furthermore, assuming the Generalized Riemann
hypothesis holds, the minimal value of r is inO (log*(D)).

= For the 2-Selmer group. They compute that S(¢) = {1,2Dr}, S'(®) =
{1,A,—2Dr /A, —2Dr}, in which A is divisible by only one of p or g. At that
time Rank(Ep) = 1, and the non-torsion points on Ej, can factor D.




Our works

= Firstly, we focus on a larger family of elliptic curve Ej,.: y* = x> — Drx where
D = pq is the integer we want to factor and r is an arbitrary integer.
Employing the method of two-descent, we reduce the problem of factoring
integer to computing the Mordell-Weil group of Ep,: y? = x> — Drx.

= The second work of this article is to improve their method of calculating 2-
Selmer group. We give a way to compute the 2-Selmer group of a family of
elliptic curve Ep,: y? = x3 — Drx, where D = pq is a product of two distinct
odd primes and r is an arbitrary integer.




Parity conjecture

= Corollary: Let elliptic curve Ep: y? = x3 — Dx, with 4 t D, and D quartic-free .
We denote the rank of E, by 73, then

(_1)TE= WE = Wy * W2 . 1_[ Wp

p2ID

In which

We = sgn(—D)

- —1 D =1,3,11,13 mod 16
2 1 otherwise

_(~1\_|-1p=3mod4
o = p) |1 p=1mod4




Two-descent method for Ep,.

= Considering the elliptic curve Ep,: y? = x3 — Drx, denote it by E. And denote
its dual curve E_,p,: y* = x3 + 4Drx by E.

= Define the two-descent map:
X
aE@Q) - Q /sz

(x,y) — X
oo r— 1

T — —Dr
& E@Q) - © /@)(2

(Z,9) — %
o — 1
T — Dr




Theorem: we have the following properties:

® (1)a, aare group homomorphisms

®» (2)Ima €< —1,2,b; >£ S, b;|Dr,

Ima €< —1,2,b; >2'S, b;|4Dr.

= (3)If b € Imaq, then_—W € Imq,
b

Ith € Im@, then? € Ima.

= (4){1,-Dr} € Imaq, {1,Dr} € Im@Q

= (5) |Ima - |Im@| = 272




= Theorem:ForVb € S,b € Ima & Cj:w? =b — %ZL} has solutions in Q.

Forvb € S,b € Ima < C,:w? =b + %24 has solutions in Q.

= But deciding whether C;, and C, have solutions in Q is a difficult problem, so
instead we consider whether they have solutions on local Q,, (p|2Dr).

= Definition: Define S'(¢) = {b € S|C,(Qy) # P, Vp|2Dr00}, called the 2-
Shafarevich group of E.

Define S(¢p) £ {b € S|C,(Q,) # @, Vp|2Droo}, called the 2-
Shafarevich group of E.




Theorem: Supposery = 1, |S' ()| = 4,|S(¢p)| = 20r |S(P)| =4,|S'(¢p)| =2 &
m'(¢p) =m(¢p) ={1}and ry = 1.

Proposition: When S'(¢) = {1,A,%Dr,, —2Dr’}, S(¢) = {1,2Dr'},rg = 1. At that time, the
map «, a can be written as

wE@ - Y/
oo — 1
T — —Dr
—Dr

(2k+1)P|—>AOT'T

—Dr

2kP — 1
2kP + T — —2Dr

X
a:E(@)_)@/QXZ
6 — 1

T — Dr
kP — 1
kP + T — Dr




Theorem 1: Assuming D = pq is a product of two distinct odd primes, suppose
the parity conjecture is true, then

= (1) There exists infinity many integer r, such that the rank of Ej,. is greater or
equal to one.

= (2) When the rank of Ep,. is greater or equal to one, and S(¢) = {1, Dr},

S'(®) = {1,A,—Dr /A, —Dr}, where Dr means Dr with the square factors
removed, A is divisible by only one of p or g, then Ej, has conjectural rank
one. At that time, v, (x(kP)) # v,(x(kP)) for any odd integer k, in which P is
the generator of E,p,.. Then we can factor D.



= Theorem 2: Let C4:w? = d + 324, D = (—1)™2"[I}2, p; H;Zl q; L, 77 |

d|D and d is square-free. We have:

(1) Whenm =0, C4(Qs) # P <= d > 0.
When m =1, Cq(Qa) # P holds for any d.
(2) 1) When 24d
i) Ifnzﬂ:ﬂd(@g}?éfﬁ{:}df1mad8wd+%fﬂmﬂdlﬁwd+%f
4mod320r%zlmﬂd8.
i) Ifn=1,Cy(Qa) #P < d=1mod 8 or d+ 5 =1 mod 8.
iii) Ifn=2,Ca(Qa) #P=d=1mod8ord+ L2 =1mod 8 or &
1 mod 4.
i) Ifn=3, Cq(Q:2) # ¢ < d=1 mod 8.
2) When 2 |d
i) Ifn=1, E’dfﬁz}%fﬁﬁd—l—%zlmﬂdﬂﬂr‘—gz]ﬂmdﬂ.
i) Ifn =2,Cy(Qy) # P 442 =0mod 32 or $+L = 2mod 16 or 2+
L =8 mod 32.
iti) If n =3, C4(Qa) # ¢ < £ =1 mod 4.
(3) Vt|d, t is prime

1) Whent=p;, Ca(Q) # P& (Z24)=1.
9) When t = g;, Ca(Qi) # & & (ZLL2), = 1.
3) Whent =ry, Ca(Q,) £ ® & (245 =1,

(4) Vtt1d, t is prime

1) Whent=p;, Ca(Q) # P« () =1.
2) Whent = q;, Ca(Q,) # & & (2) =1 or (2L5) =1,
3) Whent=rk, Ca(Q) # P < (L) =1.




The proof of Burhanuddin and Huang

Proof. Accroding to Corollary 1, we can get (—1)"% = wy,-wo-w, =—1-1-1=
—1,s0rp > 1.

(1) For Ep : yg =z’ — Dz, S = {C)O} U{p9Q}s Q(S}Q) =< —-Lp,qg> U{OC}

vd € Q(S,2), apply theorem (2) to investigate the local solution of C’; : w? =
d— D24

d
Because of (1) = (—1)%(—1)%@) = —1 = Cp(Q,) = .50 —1.pg &
S'(@).
Because of (1) = (=1)= (-1) = (§) = -1 = C_,(Q,) = &, 50 —p,q ¢
S'(@).
Because of p — % = 0 mod 16 = Cp(Qo) # &; () = (—l)pT(%) = 1=

Cp(Qp) # P (7) = 1= Cp(Qy) # D, s0 p,—q € 5'(0).
Thus 5'(¢) = {1 P =0 —pq}

(2) For E_yp : y*> = 2* + 4Dz, § = {oo}U{2,p,q}, Q(5,2) =< —1,2,p,q >
U{oc} Yd € Q(S 2), apply theorem (2) to investigate the local solution of
Cd “ = d + —D24
Because of 4D > 0, so —1, -2, —p, —q, —2p, —2q, —2pq ¢ S(o).

Because of (2) = (—1)E —1= C2(Q,) =P, 50 2,2pg & S().
Because of p = 3 mod 4, ‘31‘1? =qg=3mod 4= Cp(Q2) =P,s0p, q& S().

Because of 2p+ £ 3 = 2p+2¢ =12 mod 16 = Cap(Q2) = &b, s0 2p,2q & S(¢).
Thus 5(¢) = {1, pq}.




D =3mod8

D= 5mod8
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Remaining Problem

= 1. While D varies in Z, probability that the points on
E,, can factor D.

= 2. More efficient way to find the point on Ep,..

= 3.There is a way to find point on surface y? = x> —

Drz?
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