
Adaptive Side-Channel Analysis Model and Its
Applications to White-Box Block Cipher

Implementations

Yufeng Tang1, Zheng Gong1(�), Tao Sun2, Jinhai Chen1, and Fan Zhang3,4

1 School of Computer Science, South China Normal University, Guangzhou, China
cis.gong@gmail.com

2 China Information Technology Security Evaluation Center (Guangdong Office),
Guangzhou, China

3 College of Computer Science and Technology, Zhejiang University,
Hangzhou, China

4 Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province,
Hangzhou, China

Abstract. White-box block cipher (WBC) aims at protecting the se-
cret key of a block cipher even if an adversary has full control over
the implementations. At CHES 2016, Bos et al. proved that WBC are
also threatened by side-channel analysis (SCA), e.g., differential fault
analysis (DFA) and differential computation analysis (DCA). Therefore,
advanced countermeasures have been proposed by Lee et al. for resisting
DFA and DCA, such as table redundancy and improved masking meth-
ods, respectively. In this paper, we introduce a new adaptive side-channel
analysis model which assumes that an adversary adaptively collects the
intermediate values of a specific function and can mount the DFA/DCA
attack with chosen inputs. In the adaptive SCA model, both theoret-
ical analysis and experimental results show that Lee et al.’s proposed
methods are vulnerable to DFA and DCA attacks. Moreover, a nega-
tive proposition is also demonstrated on the corresponding high-order
countermeasures under our new model.

Keywords: White-box block cipher · Adaptive side-channel analysis ·
Differential fault analysis · Differential computation analysis

1 Introduction

The concept of white-box attack context was introduced in 2002 by Chow, Eisen,
Johnson, and van Oorschot (CEJO) [15, 16]. It assumes that an adversary can
analyze the details of a cryptosystem with full control over its execution. White-
box block cipher (WBC) aims at preventing the secret key of a block cipher
algorithm from being extracted in a white-box environment. The first two at-
tempts of WBC were white-box AES [16] (CEJO-WBAES) and DES [15] pro-
posed by CEJO. The fundamental idea of them is to convert the operations
of a cryptographic algorithm with a secret key into look-up tables (LUTs) and

apply linear and non-linear encodings to protect the intermediate values. In
2004, Billet et al. [7] presented an algebraic attack which was named BGE at-
tack against CEJO-WBAES. From then on, although several improvements on
white-box AES [14, 24, 39] were mentioned to resist cryptanalysis, all of them
were subsequently broken [17–19].

In addition to algebraic attacks, side-channel analysis (SCA) has been demon-
strated on WBC. At CHES 2016, Bos et al. [9, 13] proposed to use differen-
tial fault analysis (DFA) and differential computation analysis (DCA) to attack
white-box implementations. DFA induces faults in intermediate values and an-
alyzing the differential equations with faulty and unencoded ciphertexts. DCA
adapts a statistical technique of differential power analysis (DPA) but uses soft-
ware computation traces consisting of noise-free intermediate values and accessed
data. These attacks perform statistical analysis on the intermediate values such
that avoid a time-consuming reverse engineering step and can be implemented
automatically. SCA attacks are the major threats to white-box implementations
as shown in the security assessment of the submissions of WhibOx 2017/19 com-
petition [11,23].

Advanced SCA methods on WBC. At CHES 2017, Banik et al. [6] devel-
oped zero difference enumeration attack which records software traces for pairs
of selected plaintexts and performs an analysis on the difference of traces. Bock
et al. [10] analyzed the ineffectiveness of internal encoding on white-box imple-
mentations under DCA attack, which pointed out that the Hamming Weight 1
of a row in a matrix are the main cause of key leakage. Lee et al. [27] presented
an in-depth analysis on the linear encoding and demonstrated that it is the un-
balanced distribution of the key-dependent intermediate values that cause the
successful DCA. Amadori et al. [4] presented a new DFA attack that combines
the techniques of DFA and BGE on a class of white-box AES implementation
with 8-bit external encodings. At CHES 2019, Rivain and Wang [33] investi-
gated mutual information analysis and collision attack to defeat the internal
encoding. Another DCA-like approach, called statistical bucketing attack, was
published by Zeyad et al. [40] for recovering the key by capturing computation
traces based on the cryptanalysis technique introduced by Chow et al. [15]. Bog-
danov et al. [12] and Maghrebi et al. [31] evaluated the higher-order cases of
the computational analysis on the white-box implementations. For mitigating
DFA, Lee et al. proposed a table redundancy method [28] which replaces the
comparison step for fault detection with an exclusive-or (XOR) operation based
on the white-box diversity and linearity of encodings. For countering DCA, Lee
et al. [30] proposed the masking technique to the key-dependent value before ap-
plying encodings in the table generating phase. However, Rivain and Wang [33]
described a 2-byte key guessing model of DCA and analyzed the first-round out-
put of which the state is unmasked. To thwart the existing DCA attacks, Lee
and Kim [29] improved their proposed scheme [30] by extending the masking to
the round outputs.

Our contribution. The main contributions of this paper are summarized as fol-
lows. (1) Based on the abilities of a white-box attacker and the efficiency of SCA

attacks on white-box implementations, we introduce an adaptive SCA model for
WBC. (2) The instantiation of adaptive DFA and DCA attacks are presented
to break Lee et al.’s table redundancy [28] and improved masking [29] white-
box implementations, respectively. The adaptive DFA replaces the ninth-round
inputs with the adaptively collected states to bypass the XOR phase for fault de-
tection. And the adaptive DCA exploits the collision of output mask to choose
the plaintexts which have the same mask at the first-round output. (3) The
higher-order table redundancy and improved masking are also discussed. More-
over, the adaptive higher-order DFA and DCA attacks are extended to defeat
such countermeasures. The comparison between the applications of traditional
and adaptive SCA models is shown in Table 1.

Table 1. The comparison between the applications of traditional and adaptive SCA
models.

Method SCA Adaptive SCA

(Higher-order) (Higher-order) DFA succeed, adaptively chosen
Table redundancy [28] DFA resisted ninth-round inputs (Section 3.2, 5.1)

(Higher-order) (Higher-order) DCA succeed, adaptively chosen
Improved masking [29] DCA resisted plaintexts (Section 3.3, 5.2)

Organization. The remainder of this paper is organized as follows. Section
2 reviews the table redundancy [28] and improved masking [29] for white-box
implementation. Section 3 describes the core idea of the adaptive SCA model on
WBC. And then we provide instances of adaptive DFA and DCA attacks against
table redundancy and improved masking methods. Afterward, Section 4 shows
the experimental results of the adaptive DFA and DCA attacks, and Section 5
extends the attacks to the higher-order countermeasures. Section 6 concludes
this paper.

2 Preliminaries

In this section, we briefly recall CEJO-WBAES and its SCA attacks. The state-
of-the-art countermeasures on those SCA attacks are also reviewed.

2.1 CEJO-WBAES

In 2002, Chow et al. [16] defined the white-box attack context and introduced
CEJO-WBAES to resist key extraction in cryptographic implementations. The
basic idea is to convert the round functions of AES into a series of LUTs and
apply secret invertible encodings to protect the intermediate values. Let T de-
note a LUT, f and g be random bijective mappings. Then the encoded LUT T ′

is defined as T ′ = g ◦ T ◦ f−1, where f−1 and g are called the input and output

encoding, respectively. To maintain the functionality of AES, the input and out-
put encodings of consecutive rounds should be constructed as pairwise invertible
mappings. Therefore, the input encoding can also play a role as input decoding
since it decodes the previous encoded output to recover the secret state. Let an
encoded LUT R′ be defined as R′ = h ◦R ◦ g−1 such that a networked encoding
can be depicted as R′ ◦ T ′ = (h ◦R ◦ g−1) ◦ (g ◦ T ◦ f−1) = h ◦ (R ◦ T) ◦ f−1.

The basic principles of CEJO-WBAES are recalled as follows. Note that an
AES state is represented by a byte array such that the index is ranked from
0 to 15. By means of partial evaluation, for each round, AddRoundKey and
SubBytes operations are composed as 16 8-bit bijective key-dependent LUTs
which are defined as T-boxes as follows.

T r
i (x) = S(x⊕ k̂r−1i), for i ∈ [0, 15] and r ∈ [1, 9],

T 10
i (x) = S(x⊕ k̂9i)⊕ k̂10i , for i ∈ [0, 15],

where S denotes the Sbox, k̂r represent the result of applying ShiftRows to
the byte array of round key. With matrix partitioning, the multiplication of
MixColumns can be decomposed into four 32-bit vectors.

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

x0
x1
x2
x3

 = x0

02
01
01
03

⊕ x1

03
02
01
01

⊕ x2

01
03
02
01

⊕ x3

01
01
03
02

= Ty0(x0)⊕ Ty1(x1)⊕ Ty2(x2)⊕ Ty3(x3).

T yj for 0 ≤ j ≤ 3 denote the 8 bits to 32 bits mappings for the decomposition
of MixColumns. For rounds 1 ≤ r ≤ 9, the T-boxes and Tyj are then merged
together to construct 16 TMCr

i for 0 ≤ i ≤ 15. Each TMCr
i is defined as follows.

TMCr
i = Tyj ◦ T r

i , for 0 ≤ i ≤ 15 and j = i mod 4.

To add diffusion and confusion to each key-dependent intermediate value, the
Mixing Bijections and Nibble Encodings are applied to all inputs and outputs of
tables. An 8×8-bit linear transformation Lr

i and a 32×32-bit one MB are inserted
before and after TMCr

i , respectively. Subsequently, 4-bit non-linear encodings N
are applied to the table inputs and outputs. The resulting encoded TMCr

i are
denoted by TypeII which is defined as follows.

TypeII: N ◦MB ◦ TMCr
i ◦ Lr

i ◦N−1.

To cancel out the effect of MB and convert it to (Lr+1
i)−1 to from the net-

worked encoding, a TypeIII table is introduced accordingly and shown in below.
Note that the table is generated by the technique of matrix partitioning as well.

TypeIII: N ◦ (Lr+1
i)−1 ◦MB−1 ◦N−1.

Besides, all the XOR operations between encoded values are conducted by
TypeIV tables which decode two 4-bit inputs and provides a 4-bit encoded XOR

result. The combination of the outputs of TypeII is aptly named TypeIV II while
the one of TypeIII is aptly named TypeIV III. Due to the linearity of XOR, the
encoding and decoding phases of TypeIV only consist of non-linear encodings.
Combining these tables, one can obtain an encoded fixed-key white-box AES
such that G◦AES◦F−1, where F−1 and G denote the external input and output
encodings respectively. Since the external encoding lacks of compatibility, most
of the theoretical analyses and constructions have not taken it into consideration
(e.g., WhibOx 2017/19 competitions [1,2]). We note that every 4 bytes of CEJO-
WBAES can also be interpreted as a column vector of 4× 4 state matrix. For a
detailed description of CEJO-WBAES, please refer to the tutorial paper [32].

2.2 Differential Fault Analysis

Following the ninth-round DFA attack model [20], Teuwen et al. [38] applied
fault attacks against CEJO-WBAES. The attack injects a byte fault into the
steps between the eighth-round and ninth-round MixColumns. Suppose that a
fault is injected at the first byte x ∈ F8

2 of the ninth-round inputs. Let δ, δ′ ∈ F8
2

denote the difference between the original byte and the faulty one before and
after SubBytes, respectively. Such that δ′ = S(x) ⊕ S(x ⊕ δ), where S denotes
the Sbox of SubBytes. The 4-byte difference after the MixColumn is represented
by (2δ′, δ′, δ′, 3δ′), where 2, 1, 1, 3 are the coefficients of MixColumns. Let
S−1 be the inverse SubBytes. For the fault-free ciphertexts C0...C7...C10...C13

(Ci ∈ F8
2, i ∈ [0, 15]) and the faulty ciphertexts C∗0 ...C

∗
7 ...C

∗
10...C

∗
13 (C∗i ∈ F8

2, i ∈
{0, 7, 10, 13}, Cj ∈ F8

2, j ∈ [0, 15]\{i}), the following equations can be listed to
find the tenth-round subkey candidate K∗i (i ∈ {0, 7, 10, 13}). By injecting two
such faults, the tenth-round 4-byte subkey can be determined by the differential
equations. The other subkeys can be recovered by the similar analysis.

2δ′ = S−1(C0 ⊕K∗0)⊕ S−1(C∗0 ⊕K∗0),

δ′ = S−1(C7 ⊕K∗7)⊕ S−1(C∗7 ⊕K∗7),

δ′ = S−1(C10 ⊕K∗10)⊕ S−1(C∗10 ⊕K∗10),

3δ′ = S−1(C13 ⊕K∗13)⊕ S−1(C∗13 ⊕K∗13).

2.3 The Table Redundancy Method Against DFA

As introduced by Lee et al. [28], table redundancy method uses multiple branches
of LUTs for the vulnerable rounds (e.g., the sixth to ninth rounds) and XOR
the outputs to obfuscate the fault injection. The description of the scheme can
be shown in three parts as follows. (1) Sharing the LUTs from Round 1 to
5. (2) Transforming independently in parallel with two sets of LUTs from the
sixth round to ninth-round TypeII. These two computations are constructed
with different sets of LUTs built by different encodings. (3) Sharing the LUTs
from ninth-round TypeIV II to Round 10. Note that the basic technique for
constructing the LUTs is followed by CEJO-WBAES [16].

Let MBl ∈ F32×32
2 and MBr ∈ F32×32

2 (l (resp. r) represents the left (resp.
right) part of the two computations) be the 32-bit Mixing Bijections of the
ninth-round TypeII. The xl ∈ F8

2 and xr ∈ F8
2 denote the two unencoded bytes of

ninth-round inputs. Such that TMC(xl) and TMC(xr) represent the outputs of
SubBytes and MixColumns from xl and xr, respectively. The outputs of the two
computations XOR with each other by a type of TypeIV followed by the shared
TypeIV II. Let x ∈ F8

2 be the original state at ninth-round inputs of standard
AES, the XOR process can be shown as

MBl · TMC(xl) ⊕ MBr · TMC(xr) =

(MBl ⊕MBr) · TMC(x), iff xl = xr = x.

Hence, the inverse Mixing Bijection MB−1 ∈ F32×32
2 in ninth-round TypeIII

can be depicted as
MB−1 = (MBl ⊕MBr)−1.

The Mixing Bijections can be combined with ⊕ because both of them are
linear transformations and the underlying state x is fault-free. Once xl or xr is
injected by a fault, the XOR cannot lead to a valid differential equation.

2.4 Differential Computation Analysis

At CHES 2016, Bos et al. [13] introduced DCA as the software counterpart of
DPA [26] to break white-box implementations. DCA divides the measurement
traces in two distinct sets according to the value of one of the bits of Sbox output.
Let xi be an input, vi be the collected traces, b = Sj(xi⊕ k) denote the j-th bit
of Sbox. For each j and k, sorting the traces vi into two sets b0 and b1 based on
the value of b. The mean trace is defined as

b̄{0,1} =

∑
v∈b{0,1} v

|b{0,1}|
.

And the difference of means is calculated as

∆ = |b̄0 − b̄1|.

Let ∆j denote the difference of means trace obtained at j-th bit for a key
hypothesis kh. Let denote the best target bit which has the highest peak for kh

by ∆j′ . Then ∆j′ is selected as the best difference of means trace for kh and
is denoted as ∆h. The final step is to select the best difference which has the
highest peak among all ∆h and it is denoted as ∆h′

. Such that the hypothesis
kh

′
corresponding to ∆h′

is the most probably correct key.

2.5 The Improved Masking Method against DCA

To thwart DCA, Lee et al. presented the improved masking method [29] which
applies the random masks to the round outputs. When building TypeII, the

8

𝑇𝑖
1

𝑇𝑦𝑗

8

𝑀
𝑀

𝑀
𝑀

𝑀𝐵

𝑁 … 𝑁 𝑁 𝑁 𝑁 𝑁 𝑁 𝑁 𝑁 𝑁

𝐿 𝐿 𝐿 𝐿

used masks

masked TypeII mask table

4

Fig. 1. TypeII MO table in the first round. The input encoding is omitted because of
the absence of external encoding.

masks are randomly picked for each input, and each output of Tyj XOR with
the random mask. The 8× 8 linear transformations L are applied to the masks
to form the mask table. The outputs of masked TypeII continue to feed the
following tables of the first round (i.e., TypeII IV, TypeIII, and TypeIII IV).
Both the masked TypeII and mask table are combined as TypeII MO as shown
in Fig. 1.

For clarity, let vs (value state) and ms (mask state) denote the round outputs
of masked state and mask table itself, respectively. The TypeII table in the
second round takes each corresponding byte of vs and ms as inputs. Thus, vs
and ms are combined by XOR to unmask in the input decoding phase of the
second round to form the TypeII MIMO table as illustrated in Fig. 2. Since the

8
⊕

𝐿𝑖
2 𝐿−1

𝑁−1

4

𝑁−1 𝑁−1 𝑁−1

vs ms

Fig. 2. The input decoding phase of TypeII MIMO table in the second round. The
following TMC2

i and the output encodings are omitted.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TypeI I _M O

TypeI V_I I

TypeI I _M O TypeI I _M O TypeI I _M O

TypeI V_I I M

TypeIII TypeIII TypeIII TypeIII

8

32

8

TypeI V_I I I

32

32

TypeI I _M I M O

8 8

32

vs ms

Fig. 3. LUT sequences of Lee et al.’s improved masking method.

unmasking is combined with the input decoding phase of TypeII MIMO table in
the second round, the intermediate values of the first round are all masked with
the random masks. Fig. 3 shows the look-up sequence from the first column of
plaintexts to the first entry of TypeII MIMO in the second round. TypeIV IIM
represents a type of TypeIV table to XOR the outputs of mask table.

The solid line in Fig. 3 denotes the masked intermediate values in the first
round while the dotted line represents the encoded masks. Hence, the collected
traces of the encoded first-round Sbox are independent of the hypothetical values
due to the presence of random masks. For a detailed description of the improved
masking method, one can refer to the original proposal [29].

3 Adaptive Side-Channel Analysis Model and its
Applications

In the previous section, we recall the two proposed countermeasures for protect-
ing against DFA and DCA on CEJO-WBAES. The table redundancy method
[28] exploits the white-box diversity to combine the redundant computations
with fault detection. The improved masking technique [29] randomizes the out-
put value of key-dependent LUTs before encodings. Although the two proposals
can mitigate the original DFA and DCA attacks, the designer did not take into
account the ability of a white-box adversary. For concerning a white-box attacker
with the technique of SCA, an adaptive SCA model on WBC is proposed in this
section.

3.1 The Adaptive Side-Channel Analysis Model on WBC

Compared with the algebraic attacks [7,17–19] which need to retrieve the encod-
ings, SCA on WBC has been proved to reduce the time complexity of recovering

deduce (partial) secret key

random (chosen) inputs

side-channel analysis

(a) SCA model

random (chosen) inputs

query for intermediates/outputs

deduce (partial) secret key

chosen-inputs

SCA

analysis of intermediates/outputs

chosen inputs

side-channel analysis

adaptive

analysis

(b) adaptive SCA model

Fig. 4. The flowchart of SCA and adaptive SCA models.

the secret key of the implementation with limited knowledge (e.g., side-channel
information). The main benefits of SCA attack are that it do not need knowl-
edge of particular implementation and the effort of reverse engineering. WBC is
more vulnerable to SCA attacks even if it is intended to thwart a more powerful
attack in the white-box setting (i.e., with full control of the implementation).
The steps of an SCA attack in a white-box scenario can be informally described
as follows, which are also illustrated in Fig. 4(a).

1. The adversary invokes the white-box implementation many times with ran-
dom (chosen) inputs.

2. During each execution, the adversary performs a modeling analysis on the
side-channel information (e.g., intermediate values) for deducing the (partial)
secret key.

Note that the modification and record of side-channel information can be im-
plemented with the help of dynamic binary instrumentation tools, such as Intel
PIN [3]. For mitigating the SCA attacks, the side-channel countermeasure (e.g.,
table redundancy and improved masking) prevents the generalized SCA attacks
by introducing a newly generated component (e.g., redundant computation and
mask table). In practice, an adversary can extend the technique of SCA attacks
with the powerful ability in the white-box attack context. An attacker can an-
alyze the correlation between the original and newly generated component to
collect the inputs which will contribute to a successful SCA attack. Such a new
attack extends the efficiency of generalized SCA and is adapted to the dedicated
countermeasure. Now, we introduce an Adaptive Side-Channel Analysis model
to break the side-channel countermeasure for WBC implementations. The steps

of an adaptive SCA attack are divided into two phases: adaptive analysis and
chosen-inputs SCA as informally described as follows, which are also illustrated
in Fig. 4(b).

– Adaptive analysis. The adversary pinpoints the entry of a specific func-
tion and queries it with random (chosen) inputs for collecting intermedi-
ates/outputs. The adversary then performs an analysis on the intermedi-
ates/outputs to choose inputs for repeating query or for the following SCA
attack.

– Chosen-inputs SCA. The adversary makes her choice of the inputs to the
cryptographic algorithm and mounts the generalized SCA attacks to retrieve
the secret key.

The attacker can pinpoint a dedicated region by the exploitation of data de-
pendency analysis [22] and fault attacks [4, 5, 8]. The concrete steps and time
complexity are related to the code obfuscation techniques used in the white-box
implementation. Since the obscurity of the location of a function in a WBC im-
plementation cannot provide the security on the algorithm itself, our adaptive
SCA model assumes that an entry can be pinpointed with affordable complexity.
After the adaptive analysis phase, chosen-inputs SCA can be mounted automat-
ically with the help of practical SCA tools [35, 36]. Moreover, we note that an
adaptive SCA adversary is capable of all known SCA attacks on WBC.

The main difference between SCA and adaptive SCA model is that an adap-
tive SCA attacker needs to obtain a set of target inputs before an SCA attack.
The previous works [25,34] described an adversary with the ability of adaptively
choosing inputs to induce the faults or probe the intermediate variables. But
they studied an attack in the gray-box model instead of the white-box model
and are out of scope for this work. The adaptive SCA model in a gray-box setting
is left as future work. In the next section, we will show the adaptive DFA and
DCA attacks against Lee et al.’s table redundancy [28] and improved masking
methods [29].

3.2 Adaptive DFA on the Table Redundancy Method

To break the table redundancy method [28], the fault needs to be simultane-
ously induced at both the original and redundant computations and thus their
underlying states are the same value. Concerning the fault-free process of ta-
ble redundancy method, the decoded states of both sides always keep the equal
values since both of the two computations are the same AES encryption. Al-
though the diversity of WBC is considered in the redundant design, the internal
encodings are fixed when the implementation is running. So the intermediate
input values of the ninth-round TypeII always appear pairwise. Let yli ∈ F8

2 and
yri ∈ F8

2 (i ∈ [0, 15]) be an 8-bit input value of the two ninth-round TypeII,
respectively. Let xi ∈ F8

2 (i ∈ [0, 15]) be an 8-bit unencoded input state of the
ninth round. The Pli and Pri (i ∈ [0, 15]) denote an 8-bit input decoding on
F8
2 (i.e., Mixing Bijections and non-linear encodings) of yli and yri, respectively.

For the decoding process of the ninth-round inputs , we have

xi = Pli(yli) = Pri(yri), i ∈ [0, 15].

Since xi have 256 different values and the mappings of input decoding (i.e.,
Pli and Pri) are bijections, each pair of (yli, yri) can be collected from the
corresponding inputs of the ninth round. Let T be a set of pairwise values, such
that

Ti = {(yli, yri) | yli ∈ F8
2, yri ∈ F8

2}, with #Ti = 256, i ∈ [0, 15].

Based on the ninth-round DFA attack model [20], the fault can be injected
at one of the four bytes of a column to recover the four-byte subkey in the tenth
round. Such that Tj for j = 0, 4, 8, 12 are sufficient for obtaining the tenth-round
key. For simplicity, the index j is discarded and the injection on one byte of the
ninth round can be concluded by the following steps. The other locations of the
ninth-round inputs are similar to this example.

1. Querying for the pairwise values at the original and redundant ninth-round
inputs by repeatedly running the implementation with random plaintexts to
form the set T .

2. Getting a fault-free ciphertext by running with a random plaintext and de-
noting the pairwise values at the ninth-round inputs as (yl, yr).

3. Replacing (yl, yr) with other pairs in T \(yl, yr) which are denoted as (y∗l , y
∗
r)

and collecting the faulty ciphertexts by running the cryptographic program
with the same plaintext.

4. Repeating Step 3 and using the DFA tools to perform the analysis between
the fault-free and faulty ciphertexts.

Let x∗ ∈ F8
2 be the underlying state of the faulty pairs (y∗l , y

∗
r). The decoding

Pl and Pr are fixed into the parts of LUTs in the encryption, thus x will be
tampered as x∗ if (yl, yr) are replaced with (y∗l , y

∗
r). The modification from x to

x∗ represents that the faults are injected successfully at the ninth-round inputs.
This process simultaneously modifies the underlying states of the two computa-
tions into other ones by replacing the pairwise values at the ninth-round inputs
with the other pairs in T . In this way, MB can be combined in the XOR process
since the decoded states after the ninth-round TMC are identical to each other
between two computations. Note that T can be collected with overwhelming
probability because of the splendid confusion and diffusion of the first 8-round
AES. Concerning the practical analysis, the subkey can be recovered by only
two faults in the same location, thus T need not be a full set. In this way, the
adaptive DFA attack on the table redundancy method exploits the replacement
on the ninth-round inputs to bypass the elaborately designed XOR phases of
TypeII. Thus, the vulnerability of table redundancy under DFA attack is identi-
cal to CEJO-WBAES [16]. The adaptive DFA can also be extended to break a
table redundant white-box implementation with 8-bit external encodings since
we assume that the attacker knows the technique of existing DFA attack [4].

3.3 Adaptive DCA on the Improved Masking Method

Since the improved masking conceals the key-dependent outputs of the first
round by introducing the random masks, DCA fails to analyze the correlation
between the intermediate and hypothesis values. In the following text, Qi and
Q′i for 0 ≤ i ≤ 3 denote bijective mapping on F8

2 and are referred to as output
encodings of vs and ms (refer to Section 2.5), respectively. Let yi, y

′
i : (F8

2)4 → F8
2

for 0 ≤ i ≤ 3 be the functions of the mappings from plaintexts to vs and ms,
ki ∈ F8

2 for 0 ≤ i ≤ 3 be the subkeys in the first round, and (x0, x1, x2, x3) ∈ (F8
2)4

denote the first column of plaintexts. Such that the function of vs in the first
column which is depicted by solid line in Fig. 3 can be shown as follows.

yi(x0, x1, x2, x3) = Qi ◦ (mci,0 · S(x0 ⊕ k0)⊕mci,1 · S(x1 ⊕ k1)

⊕mci,2 · S(x2 ⊕ k2)⊕mci,3 · S(x3 ⊕ k3)⊕Mi).

The corresponding function of ms which is depicted by the dotted line in Fig. 3
can be represented in below.

y′i(x0, x1, x2, x3) = Q′i ◦ (Mi).

Note that Mi denote the mask used and take all the values on F8
2, mci denote

the MixColumns coefficient, 0 ≤ i ≤ 3 denotes the index of states. The functions
of vs and ms are also illustrated in Fig. 5(a) and 5(b), respectively.

MC

⊕𝑘0 ⊕𝑘1 ⊕𝑘2 ⊕𝑘3

S S S S

⊕𝑀0 ⊕M1 ⊕M2 ⊕M3

𝑄0 Q1 Q2 Q3

8 8 8 8

8 8 8 8

𝑥0 𝑥1 𝑥2 𝑥3

y0 y1 y2 y3

(a) yi(x0, x1, x2, x3)

𝑀0 𝑀1 𝑀2 𝑀3

Q‘0 𝑄’1 𝑄‘2 𝑄’3

8 8 8 8

8 8 8 8

𝑥0 𝑥1 𝑥2 𝑥3

𝑦‘0 𝑦‘1 𝑦’2 𝑦‘3

(b) y′
i(x0, x1, x2, x3)

Fig. 5. The mapping function from plaintexts to (a) vs and (b) ms in the first column.

Mentioned by Lee et al. [29], each Mi is independently generated for different
inputs such that its randomness and uniformity help to mask the key-dependent
output of yi. However, since Mi need to be annihilated between the outputs of
yi and y′i, the underlying Mi used in the function of vs and ms for the same

(x0, x1, x2, x3) are identical to each other. Due to the fact that the encodings
Q′i are fixed bijective mapping, a collision in an encoded byte Q′i(x) corresponds
with a collision in the decoded byte x as well. Thus, one can sort the inputs by
the identical outputs of y′i, i.e., to get the set

Pi = {(x0, x1, x2, x3) | y′i(x0, x1, x2, x3) = c},

where c is a constant and i denotes the index of entry. For simplicity, the following
analysis takes i = 0. Based on the 2-byte key guessing model [33], we suppose
that (α, β, 0, 0), (α′, β′, 0, 0) ∈ P0 such that y′0(α, β, 0, 0) = y′0(α′, β′, 0, 0), which
also implies that Q′0(M0) = Q′0(M ′0). In this way, M0 = M ′0, thus (α, β, 0, 0) and
(α′, β′, 0, 0) have the same mask value M0. Once the underlying mask of yi are
constant for different plaintexts, DCA can recover the secret key for analyzing
the correlation between the computation traces and hypothesis outputs. The
detailed attack can be represented by the following steps on recovering the first
two bytes of the first-round key. The steps for other key bytes are similar to this
one.

1. Querying for the plaintexts as the set P0 which have the same output of y′0
by enumerating the first two bytes of the inputs and fixing the other bytes
of y′0 (e.g., y′0(x0, x1, 0, 0)).

2. Collecting the bit traces υ which include the values of the outputs of y0 by
choosing the plaintexts in P0.

3. Selecting the XOR of the first two outputs of MixColumns as the hypothet-
ical value b, that is

b = mci,0 · S(x0 ⊕ k′0)⊕mci,1 · S(x1 ⊕ k′1),

where k′0 and k′1 are key guesses.
4. Mounting the DCA attack on analyzing the correlation between υ and b to

recover k0 and k1.

For k2 and k3, the attack needs to enumerate x2 and x3 and fix the other
bytes. The key recovery of other columns is similar to this example. Note that
the collected y′0 need not be set as a pre-defined value since any constant on F8

2

can help to sort the plaintexts. For a practical attack, the number of plaintexts
in P0 depends on the number of traces that are exploited by the original DCA.

Suppose that the mask value is fixed as a constant m, such that

y0(x0, x1, 0, 0) = Q0 ◦ (mci,0 · S(x0 ⊕ k0)⊕mci,1 · S(x1 ⊕ k1)⊕ γ ⊕m),

where the constant γ = mci,2 · S(0⊕ k2)⊕mci,3 · S(0⊕ k3). Note that the XOR
phase of constant can be combined with the linear part of the encoding Q0 to
form a new encoding Q̃0. Thus, y0(x0, x1, 0, 0) = Q̃0 ◦ (mci,0 ·S(x0⊕k0)⊕mci,1 ·
S(x1 ⊕ k1)). Because of the ineffectiveness of internal encodings [10], the strong
correlations can be computed between v and b.

The adaptive DCA attack on the improved masking method utilizes the
collision on y′ to sort the plaintexts which have the same mask. Such that the
elaborately designed masking can be bypassed since a constant mask cannot
prevent the leakage of a secret key. In this way, the vulnerability of improved
masking under DCA attack is identical to CEJO-WBAES [16].

4 Theoretical Analysis and Experimental Results

This section performs the practical attacks on table redundancy and improved
masking based on the adaptive SCA model. Following such a model, a white-
box adversary can directly locate and modify any intermediate values in an
implementation. Such that for efficiency, the experiment collects the target val-
ues during the table look-up operations by modifying the corresponding source
code of encryption. Our attack is conducted on a PC with Intel Core i5-6200U
processor @2.3 GHz, 12GB RAM. The compiler for building a shared library
is GCC 8.2.0, while ”-O2” optimization is enabled. All the counts have been
measured 100,000 times to get the averages. For verifying our results, the crucial
components of our experiments are open-sourced in

https://github.com/scnucrypto/Adaptive-SCA.

4.1 Results of the Adaptive DFA on the Table Redundancy Method

The experiment firstly generates the sets Tj for j = 0, 4, 8, 12 consisting of pair-
wise bytes of the ninth-round inputs between which one is the original state and
the other is the redundant one. The result shows that each Tj can be fully filled
up by 1,548 executions, encrypting with random plaintexts. Due to the fact that
two faults injection at the first byte of a column in the ninth round can help to
recover a 4-byte subkey of the tenth round, Tj can only be collected by three
pairwise states instead of a full set. Note that, the first element of Tj can be
found by the first encryption and the corresponding plaintext can be recorded
as the one for the fault injection. Such that the replacement for adaptive DFA
attack only relies on another two elements of Tj which can be collected by ex-
tra 2 executions with random plaintexts based on our further experiment. The
correlation between the number of plaintexts and the number of the adaptively
chosen elements of Tj is illustrated in Fig. 6. Note that each Tj has 256 elements
at most.

Subsequently, the pairwise states at the first byte in each of four columns
are collected to form four corresponding Tj . The adaptive replacement between
the original pairwise state at ninth-round inputs and the elements in Tj is per-
formed to yield a result as the fault injection. After the fault-free ciphers and
faulty ciphertexts are recorded, the tools Jean Grey [36] is invoked to solve the
differential equations and recover the tenth-round key. The main key can be ob-
tained from the tenth-round key by using the key scheduling reversers supported
by Stark [37] tools. To sum up, at least 5 executions (3 times for collecting Tj and
2 times for the replacement of fault injection) of the white-box implementation
can recover the 4-byte subkey of the tenth round. Totally at least 20 executions
of encryption can extract the 16-byte tenth-round key.

https://github.com/scnucrypto/Adaptive-SCA

0 50 100 150 200 250
The number of the adaptively chosen ninth-round inputs

0

200

400

600

800

1000

1200

1400

1600

Th
e

nu
m

be
r o

f t
he

 p
la

in
te

xt
s

Fig. 6. The number of the plaintexts used to adaptively choose the pairwise ninth-
round inputs to form the elements of Tj .

4.2 Results of the Adaptive DCA on the Improved Masking
Method

The experiment focuses on collecting P0 as an example. The collision of y′0
for (x0, x1, 0, 0) can help to choose the plaintexts of which the mask value are
identical to each other. Such that DCA can recover k0 and k1 based on the 2-
byte key guessing model [33]. Similarly, the collision of y′0(0, 0, x2, x3) for all x2
and x3 helps to choose the plaintexts to retrieve k2 and k3 by DCA. Note that
the collision relies on the mapping on (F8

2)2 → F8
2. Based on the randomness

and uniformity of the mask, for each constant c ∈ F8
2, there are 256 possible

inputs for y′0(x0, x1, 0, 0) = c. This implies that 256 plaintexts (also 256 traces
with the same mask) at most help to recover a 2-byte key. The result shows
that 53,884 executions with the enumeration of (x0, x1) ∈ (F8

2)2 can collect all
256 inputs which map to a same constant through the function y′0 to form the
set P0. Subsequently, the elements in P0 are adaptively chosen as plaintexts for
the white-box implementation and thus the DCA attack can be mounted by the
tools [21,35].

In practice, a 2-byte key leakage attack can be captured under DCA by an-
alyzing less than 256 traces. Our experimental result shows that at least 25
plaintexts in P0 can successfully help to recover the 2-byte key with the traces
that are composed of y0. Fig. 7 shows the relation between the number of the ele-
ments in P0 and the number of required plaintexts. The plaintexts are adaptively
chosen by enumerating (x0, x1) ∈ (F8

2)2. Note that each P0 has 256 elements at
most because of the uniform distribution with random mask. As illustrated in
Fig. 7, nearly 3,240 executions of encryption can help to collect 25 elements of
P0. Note that each 2-byte key is obtained by DCA with chosen 4-byte plain-
texts. Such that, in summary, at least about 3,265 executions (3,240 times for
obtaining Pj corresponding to four 4-byte plaintexts and 25 times for collecting
computation traces which comprises the outputs of yj , for j = 0, 4, 8, 12) of the

0 50 100 150 200 250
The number of the adaptively chosen plaintexts

0

10000

20000

30000

40000

50000

Th
e

nu
m

be
r o

f t
he

 p
la

in
te

xt
s

Fig. 7. The number of the plaintexts used to adaptively choose the target plaintexts
which have a same mask value in y0 to form the elements of P0.

white-box implementation can recover four 2-byte subkeys of the first round.
Totally at least about 6,530 executions of encryption can extract the 16-byte
first-round key.

5 Adaptive SCA Model on Higher-order Countermeasures

In [28], Lee et al. also discussed an enhancement on the security of the ta-
ble redundancy method for protecting against DFA. The proposal increases the
number of redundant computations for reducing the probability of making a
fault collision in which the two disturbed bytes will be decoded into the same
value. Such an extended redundancy is introduced as the higher-order version of
the table redundancy method in this paper. In the following section, we describe
the higher-order adaptive DFA against extended redundancy and also evaluate
the higher-order adaptive DCA on cryptanalyzing the improved masking in a
higher-order manner.

5.1 Adaptive DFA against the Higher-order Table Redundancy
Method

A higher-order table redundancy consists of more than one redundant compu-
tation to enhance the security for protecting against DFA attack. Let n be the
number of redundant computations, x0 and xi ∈ F8

2 for i = 1, ..., n be the original
and redundant states at the first byte of the ninth-round inputs, respectively.
x ∈ F8

2 denotes the corresponding state of standard AES. The XOR phase of the
higher-order table redundancy can be shown as follows, where MBi, i = 0, ..., n
represent the Mixing Bijections of each TypeII table.

MB0 · TMC(x0)⊕ ...⊕MBn · TMC(xn) =

(MB0 ⊕ ...⊕MBn) · TMC(x), iff x0 = ... = xn = x.

Note that MBi can be combined over ⊕ because of their linear property and
each xi is identical to each other. This implies that the faults need to be injected
simultaneously on every xi so that the combination of the original and redun-
dant computations still can induce the available faulty ciphers. The higher-order
adaptive DFA attack exploits the sets of pre-collected intermediate values at the
ninth-round inputs to implement a replacement between the fault-free and faulty
states. The general steps of such an attack are similar to the adaptive DFA on one
redundant computation and the differences are twofold. (1) The set T consists
of the (n+1)-tuple values of the original and n redundant ninth-round inputs by
repeatedly encrypting random plaintexts. (2) The fault is injected through the
adaptive replacement between the original (n+ 1)-tuple value and the replaced
one from T . Since T is generated by collecting the fault-free intermediate values,
the underlying states of each value among n+ 1 tuples are the same one. In this
way, the replacement between each (n + 1)-tuple value has the same effect as
tampering the state to another one. Note that such fault injection takes place in
the ninth-round inputs which are not affected by the XOR phase of table redun-
dancy. Thus, the higher-order adaptive DFA attacker can recover the secret key
by DFA tools [36] to analyze the faulty ciphertexts obtained by the replacement
with T . Consequently, the higher-order redundant computation cannot enhance
security since it still cannot protect against the replacement on values at the
ninth-round inputs. The required times of encryption for the adaptive DFA on
higher-order table redundancy does not increase due to the identical collection
as the attack on the one redundant computation.

5.2 Adaptive DCA against Higher-order Improved Masking
Method

A higher-order improved masking consists of more than one mask to enhance
the security for protecting against DCA attack. In the following texts, the first
entries of vs and ms (refer to Section 2.5) in the first column are still analyzed
as an example to recover the first two bytes of the first-round key. Because of
the presence of higher-order masking, the functions of ms consist of n mask
tables. With slight abuse of notation, y : (F8

2)4 → F8
2 denotes the function of

vs, y′i : (F8
2)4 → F8

2 for 0 ≤ i ≤ n − 1 denotes the functions of ms, P represents
the set of chosen plaintexts. Note that the index 0 of entry is discarded for y,
y′, and P. The subscript i of y′ is redefined as the index of mask. Let mi for
0 ≤ i ≤ n − 1 be the mask used, such that the function of vs can be shown as
follows.

y(x0, x1, x2, x3) = Q ◦ (mc0,0 · S(x0 ⊕ k0)⊕mc0,1 · S(x1 ⊕ k1)

⊕mc0,2 · S(x2 ⊕ k2)⊕mc0,3 · S(x3 ⊕ k3)⊕m0 ⊕ ...⊕mn−1).

The corresponding functions of ms can be represented in below.

y′i(x0, x1, x2, x3) = Q′i ◦ (mi).

Note that Q and Q′i represent the output encodings of vs and ms on F8
2,

respectively. To bypass the effect of higher-order masking, the bit traces need

to be collected by choosing the plaintexts of which the underlying masks are
identical to each other. This implies that for each element (x0, x1, x2, x3) ∈
(F8

2)4 of the target set P, their mi in y′i are identical to each other. Such that
m0⊕ ...⊕mn−1 of the elements in P is a same value. Let ci ∈ F8

2 for 0 ≤ i ≤ n−1
denote constant values. Now the set S can be redefined as follows.

P = {(x0, x1, x2, x3) | y′0(x0, x1, x2, x3) = c0,

..., y′n−1(x0, x1, x2, x3) = cn−1}.

The higher-order adaptive DCA attack needs to successively find the colli-
sions of y′i to obtain the target plaintexts (x0, x1, x2, x3) ∈ P. Subsequently, the
attacker can mount a successful DCA attack by the chosen plaintexts in P and
collecting the software traces which include the value of y. Table 2 illustrates
the number of the executions of y′i and the number of corresponding collected
plaintexts. The result shows that, to attack a third-order improved masking,
232 + 224 + 216 executions of y′i can obtain 28 plaintexts which yield the same
masks mi by making the collision on outputting the same value ci for i = 0, 1, 2.
This process requires the adaptive DCA attacker to collect the plaintexts from
y′0 to y′2. The resulting 28 plaintexts have the same masks m0, m1, and m2.
Such that DCA can retrieve the secret key with the chosen plaintexts because of
the constant mask. It is worth noting that, the higher-order improved masking
is not practical for white-box implementations because the multiple inputs of
TypeII MIMO (refer to Fig. 2) will result in an exponential increase in the space
footprint.

Table 2. The number of executions of y′
i(x0, x1, x2, x3) to yield the same mask mi for

i = 0, 1, 2 and the number of corresponding collected plaintexts.

m0 m1 m2

(First-order) (Second-order) (Third-order)

Executions of y′
i 232 224 216

Collected plaintexts 224 216 28

6 Conclusion

In this paper, a novel SCA model has been proposed for introducing the adaptive
analysis and chosen-inputs SCA phases to traditional SCA attacks on WBC.
The new adaptive model is applied to Lee et al.’s improved countermeasures.
For the practical security of WBC, our results motivate to explore new SCA
countermeasures on WBC by concerning the abilities of adaptive SCA attacker.
In future work, it is interesting to build an adaptive algebraic analysis model
to break the state-of-the-art countermeasures of algebraic attacks (e.g., BGE
attack) on WBC.

Acknowledgments. We are grateful to the anonymous reviewers for their in-
sightful comments. This work was supported in part by National Key R&D
Program of China (2020AAA0107700), National Natural Science Foundation of
China (62072192, 62072398), and National Cryptography Development Fund
(MMJJ20180206). Fan Zhang was also supported by Alibaba-Zhejiang Uni-
versity Joint Institute of Frontier Technologies, by Zhejiang Key R&D Plan
(2019C03133).

References

1. CHES 2017 capture the flag challenge - the WhibOx contest, an ecrypt white-box
cryptography competition. https://whibox.io/contests/2017/, accessed June
1, 2021

2. CHES 2019 capture the flag challenge - the WhibOx contest edition 2. https:

//whibox.io/contests/2019/, accessed June 1, 2021

3. Pin - a dynamic binary instrumentation tool. https://software.intel.com/c

ontent/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentati

on-tool.html, accessed June 1, 2021

4. Amadori, A., Michiels, W., Roelse, P.: A DFA attack on white-box implementa-
tions of AES with external encodings. In: International Conference on Selected Ar-
eas in Cryptography. pp. 591–617. Springer (2019). https://doi.org/10.1007/

978-3-030-38471-5_24

5. Amadori, A., Michiels, W., Roelse, P.: Automating the BGE attack on white-box
implementations of AES with external encodings. In: 2020 IEEE 10th International
Conference on Consumer Electronics (ICCE-Berlin). pp. 1–6. IEEE (2020). http

s://doi.org/10.1109/ICCE-Berlin50680.2020.9352195

6. Banik, S., Bogdanov, A., Isobe, T., Jepsen, M.: Analysis of software countermea-
sures for whitebox encryption. IACR Transactions on Symmetric Cryptology pp.
307–328 (2017). https://doi.org/10.13154/tosc.v2017.i1.307-328

7. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: International Workshop on Selected Areas in Cryptography. pp.
227–240. Springer (2004). https://doi.org/10.1007/978-3-540-30564-4_16

8. Biryukov, A., Udovenko, A.: Attacks and countermeasures for white-box designs.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 373–402. Springer (2018). https://doi.org/10.1007/

978-3-030-03329-3_13

9. Bock, E.A., Bos, J.W., Brzuska, C., Hubain, C., Michiels, W., Mune, C., Gonzalez,
E.S., Teuwen, P., Treff, A.: White-box cryptography: don’t forget about grey-box
attacks. Journal of Cryptology 32(4), 1095–1143 (2019). https://doi.org/10.

1007/s00145-019-09315-1

10. Bock, E.A., Brzuska, C., Michiels, W., Treff, A.: On the ineffectiveness of internal
encodings-revisiting the DCA attack on white-box cryptography. In: International
Conference on Applied Cryptography and Network Security. pp. 103–120. Springer
(2018). https://doi.org/10.1007/978-3-319-93387-0_6

11. Bock, E.A., Treff, A.: Security assessment of white-box design submissions of the
CHES 2017 CTF challenge. IACR Cryptol. ePrint Arch. 2020, 342 (2020). http

s://eprint.iacr.org/2020/342

https://whibox.io/contests/2017/
https://whibox.io/contests/2019/
https://whibox.io/contests/2019/
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic- binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic- binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic- binary-instrumentation-tool.html
https://doi.org/10.1007/978-3-030-38471-5_24
https://doi.org/10.1007/978-3-030-38471-5_24
https://doi.org/10.1109/ICCE-Berlin50680.2020.9352195
https://doi.org/10.1109/ICCE-Berlin50680.2020.9352195
https://doi.org/10.13154/tosc.v2017.i1.307-328
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-030-03329-3_13
https://doi.org/10.1007/978-3-030-03329-3_13
https://doi.org/10.1007/s00145-019-09315-1
https://doi.org/10.1007/s00145-019-09315-1
https://doi.org/10.1007/978-3-319-93387-0_6
https://eprint.iacr.org/2020/342
https://eprint.iacr.org/2020/342

12. Bogdanov, A., Rivain, M., Vejre, P.S., Wang, J.: Higher-order DCA against
standard side-channel countermeasures. In: International Workshop on Construc-
tive Side-Channel Analysis and Secure Design. pp. 118–141. Springer (2019).
https://doi.org/10.1007/978-3-030-16350-1_8

13. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analy-
sis: Hiding your white-box designs is not enough. In: International Conference on
Cryptographic Hardware and Embedded Systems. pp. 215–236. Springer (2016).
https://doi.org/10.1007/978-3-662-53140-2_11

14. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: Another attempt.
IACR Cryptology ePrint Archive 2006(2006), 468 (2006). https://eprint.iac

r.org/2006/468

15. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: A white-box DES implemen-
tation for DRM applications. In: ACM Workshop on Digital Rights Management.
pp. 1–15. Springer (2002). https://doi.org/10.1007/978-3-540-44993-5_1

16. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptogra-
phy and an AES implementation. In: International Workshop on Selected Ar-
eas in Cryptography. pp. 250–270. Springer (2002). https://doi.org/10.1007/

3-540-36492-7_17

17. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao–Lai
white-box AES implementation. In: International Conference on Selected Ar-
eas in Cryptography. pp. 34–49. Springer (2012). https://doi.org/10.1007/

978-3-642-35999-6_3

18. De Mulder, Y., Roelse, P., Preneel, B.: Revisiting the BGE attack on a white-
box AES implementation. IACR Cryptology ePrint Archive 2013, 450 (2013).
https://eprint.iacr.org/2013/450

19. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box
AES implementation. In: International Conference on Cryptology in India. pp.
292–310. Springer (2010). https://doi.org/10.1007/978-3-642-17401-8_21

20. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on AES. In:
International Conference on Applied Cryptography and Network Security. pp. 293–
306. Springer (2003). https://doi.org/10.1007/978-3-540-45203-4_23

21. Fakub: White-box DPA processing: Scripts for trace acquisition, filtering, process-
ing and displaying results. https://github.com/fakub/White-Box-DPA-Process

ing, accessed June 1, 2021
22. Goubin, L., Paillier, P., Rivain, M., Wang, J.: How to reveal the secrets of an

obscure white-box implementation. Journal of Cryptographic Engineering pp. 1–
18 (2019). https://doi.org/10.1007/s13389-019-00207-5

23. Goubin, L., Rivain, M., Wang, J.: Defeating state-of-the-art white-box counter-
measures with advanced gray-box attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2020(3), 454–482 (2020). https://doi.org/

10.13154/tches.v2020.i3.454-482

24. Karroumi, M.: Protecting white-box AES with dual ciphers. In: International Con-
ference on Information Security and Cryptology. pp. 278–291. Springer (2010).
https://doi.org/10.1007/978-3-642-24209-0_19

25. Keren, O., Polian, I.: IPM-RED: combining higher-order masking with robust error
detection. Journal of Cryptographic Engineering pp. 1–14 (2020). https://doi.

org/10.1007/s13389-020-00229-4

26. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Annual international
cryptology conference. pp. 388–397. Springer (1999). https://doi.org/10.1007/

3-540-48405-1_25

https://doi.org/10.1007/978-3-030-16350-1_8
https://doi.org/10.1007/978-3-030-16350-1_8
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/978-3-662-53140-2_11
https://eprint.iacr.org/2006/468
https://eprint.iacr.org/2006/468
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://eprint.iacr.org/2013/450
https://eprint.iacr.org/2013/450
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-540-45203-4_23
https://github.com/fakub/White-Box-DPA-Processing
https://github.com/fakub/White-Box-DPA-Processing
https://doi.org/10.1007/s13389-019-00207-5
https://doi.org/10.13154/tches.v2020.i3.454-482
https://doi.org/10.13154/tches.v2020.i3.454-482
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/s13389-020-00229-4
https://doi.org/10.1007/s13389-020-00229-4
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25

27. Lee, S., Jho, N.S., Kim, M.: On the linear transformation in white-box cryptog-
raphy. IEEE Access 8, 51684–51691 (2020). https://doi.org/10.1109/ACCESS

.2020.2980594

28. Lee, S., Jho, N.S., Kim, M.: Table redundancy method for protecting against fault
attacks. IEEE Access 9, 92214–92223 (2021). https://doi.org/10.1109/ACCESS

.2021.3092314

29. Lee, S., Kim, M.: Improvement on a masked white-box cryptographic implemen-
tation. IEEE Access 8, 90992–91004 (2020). https://doi.org/10.1109/ACCESS

.2020.2993651

30. Lee, S., Kim, T., Kang, Y.: A masked white-box cryptographic implementation for
protecting against differential computation analysis. IEEE Transactions on Infor-
mation Forensics and Security 13(10), 2602–2615 (2018). https://doi.org/10.

1109/TIFS.2018.2825939

31. Maghrebi, H., Alessio, D.: Revisiting higher-order computational attacks against
white-box implementations. IACR Cryptol. ePrint Arch. 2019, 1405 (2019).
https://eprint.iacr.org/2019/1405

32. Muir, J.A.: A tutorial on white-box AES. Advances in network analysis and its ap-
plications pp. 209–229 (2012). https://doi.org/10.1007/978-3-642-30904-5_9

33. Rivain, M., Wang, J.: Analysis and improvement of differential computation
attacks against internally-encoded white-box implementations. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems pp. 225–255 (2019).
https://doi.org/10.13154/tches.v2019.i2.225-255

34. Seker, O., Eisenbarth, T., Liskiewicz, M.: A white-box masking scheme resisting
computational and algebraic attacks. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems pp. 61–105 (2021). https://doi.org/10.46586/tc

hes.v2021.i2.61-105

35. Side-Channel-Marvels: Deadpool: Repository of various public white-box crypto-
graphic implementations and their practical attacks. https://github.com/SideC

hannelMarvels/Deadpool, accessed June 1, 2021
36. Side-Channel-Marvels: JeanGrey: A tool to perform differential fault analysis

attacks (DFA). https://github.com/SideChannelMarvels/JeanGrey, accessed
June 1, 2021

37. Side-Channel-Marvels: Stark: Repository of small utilities related to key recovery.
https://github.com/SideChannelMarvels/Stark, accessed June 1, 2021

38. Teuwen, P., Hubain, C.: Differential fault analysis on white-box AES implementa-
tions. https://blog.quarkslab.com/differential-fault-analysis-on-white

-box-aes-implementations.html, accessed June 1, 2021
39. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2009 2nd In-

ternational Conference on Computer Science and its Applications. pp. 1–6. IEEE
(2009). https://doi.org/10.1109/CSA.2009.5404239

40. Zeyad, M., Maghrebi, H., Alessio, D., Batteux, B.: Another look on bucketing
attack to defeat white-box implementations. In: International Workshop on Con-
structive Side-Channel Analysis and Secure Design. pp. 99–117. Springer (2019).
https://doi.org/10.1007/978-3-030-16350-1_7

https://doi.org/10.1109/ACCESS.2020.2980594
https://doi.org/10.1109/ACCESS.2020.2980594
https://doi.org/10.1109/ACCESS.2021.3092314
https://doi.org/10.1109/ACCESS.2021.3092314
https://doi.org/10.1109/ACCESS.2020.2993651
https://doi.org/10.1109/ACCESS.2020.2993651
https://doi.org/10.1109/TIFS.2018.2825939
https://doi.org/10.1109/TIFS.2018.2825939
https://eprint.iacr.org/2019/1405
https://eprint.iacr.org/2019/1405
https://doi.org/10.1007/978-3-642-30904-5_9
https://doi.org/10.13154/tches.v2019.i2.225-255
https://doi.org/10.13154/tches.v2019.i2.225-255
https://doi.org/10.46586/tches.v2021.i2.61-105
https://doi.org/10.46586/tches.v2021.i2.61-105
https://github.com/SideChannelMarvels/Deadpool
https://github.com/SideChannelMarvels/Deadpool
https://github.com/SideChannelMarvels/JeanGrey
https://github.com/SideChannelMarvels/Stark
https://blog.quarkslab.com/differential-fault-analysis-on-white-box-aes-implementations.html
https://blog.quarkslab.com/differential-fault-analysis-on-white-box-aes-implementations.html
https://doi.org/10.1109/CSA.2009.5404239
https://doi.org/10.1007/978-3-030-16350-1_7
https://doi.org/10.1007/978-3-030-16350-1_7

	Adaptive Side-Channel Analysis Model and Its Applications to White-Box Block Cipher Implementations

