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Abstract. Revocable identity-based encryption (RIBE) with server-aided
ciphertext evolution (RIBE-CE), recently proposed by Sun et al. at TCS
2020, offers significant advantages over previous identity (or key) revoca-
tion mechanisms when considering the scenario of a secure data sharing
in the cloud setting. In this new system model, the user (i.e., a recipient)
can utilize current short-term decryption key to decrypt all ciphertexts
sent to him, meanwhile, the ciphertexts in the cloud evolve to new ones
with the aided of the cloud server and the old ones are completely delet-
ed, and thus, the revoked users cannot access to both the previously and
subsequently shared data.

In this paper, inspired by Sun et al.’s work, we propose the first lattice-
based RIBE-CE. Our scheme is more efficient and secure than the existing
constructions of lattice-based RIBE. Simultaneously, the private key gen-
erator (PKG) maintains a binary tree (BT) to handle key revocation only
with a logarithmic complexity workload in time key update, not growing
linearly in the numbers of system users N , which serves as one solution
to the challenge proposed by Sun et al., and based on the hardness of
the learning with errors (LWE) problem, we prove that our first scheme
is selectively secure in the standard model. Subsequently, based on the
main techniques for lattice basis delegation with hierarchical IBE (HIBE),
we construct our second lattice-based RIBE-CE scheme with decryption
key exposure resistance (DKER), a default security requirement for RIBE,
which has not been considered by Sun et al..
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1 Introduction

Identity-based encryption (IBE), a seminal notion envisaged by Shamir [25] at
Crypto 1984, can eliminate the needs for providing a public-key infrastructure in
conventional public-key cryptosystems. Until 2001, the first realizations of IBE



based on pairings and on quadratic residual problem were introduced by Boneh
and Franklin [5] and Cocks [8], respectively. In addition, Boneh and Franklin [5]
also suggested a naive solution to the issue of identity (or key) revocation in IBE,
that is, each non-revoked user needs to be periodically reassigned a private key
by communicating with the private key generator (PKG) per time epoch via a
secret channel. Obviously, this solution is inefficient for a large-scale IBE system,
because the PKG’s workload grows linearly in the number of system users N .

The first scalable IBE with key revocation, or simply revocable IBE (RIBE)
was set forth by Boldyreva et al. [4] at CCS 2008, whose scheme is designed by
adopting a binary tree (BT) based revocation method [19] and PKG’s workload is
only logarithmic inN . Though the time key updating process of [4] can be exactly
executed for all the non-revoked users over a public channel, each non-revoked
user still requires different time keys to accomplish ciphertexts decryption for
different time periods, and each user in IBE should store a series of time update
keys which grow linearly in the whole periods. Additionally, when considering a
practical application of RIBE, there is a problem that ciphertexts generated for
a user, but prior to the user’s revocation, remain available to the revoked user.
This problem may be undesirable for some applications, such as the scenario of
a secure data sharing in the cloud setting.

To solve both the aforementioned two problems simultaneously in a practical
manner, Sun et al. [27] recently introduced revocable identity-based encryption
with server-aided ciphertext evolution (RIBE-CE) - a new revocation method in
which the user (i.e., a recipient) has to utilize a current short-term decryption key
to decrypt all ciphertexts sent to him, meanwhile, the ciphertexts in the cloud
evolve to new ones with the aided of the cloud server and old ones are completely
deleted, and thus, the revoked users cannot access to both the previously and
subsequently shared data. To be more specific, an RIBE-CE scheme should be
carried out as follows: once the system is set up, PKG issues a long-term private
key to user. A time update key is generated by PKG and sent to the cloud server
(and all users) via a public channel at each time period. The cloud server should
do ciphertext evolution on the encrypted data which may be just uploaded by a
data owner or have been stored in the cloud for some time to new ciphertexts by
using the time update key, and the old ciphertexts are deleted. Because only the
non-revoked user can obtain a valid short-term decryption key, any revoked users
cannot decrypt the ciphertexts (including the former ciphertexts) sent to him.
In [27], apart from introducing this new RIBE model, Sun et al. also described a
generic construction and the pairing-based concrete constructions of RIBE-CE.

In this paper, inspired by the clear advantages of RIBE-CE, we bring it into
the world of lattice-based cryptograph which has faster arithmetic operations
and is believed to the most promising candidate for post-quantum cryptography.

Related Works. The first scalable RIBE scheme was introduced by Boldyre-
va et al. [4], whose scheme is constructed by combining a fuzzy IBE scheme [23]
and a subset cover framework [19]. Subsequently, an adaptive-id secure RIBE and
RIBE with decryption key exposure resistance (DKER) from bilinear groups were
proposed by Libert and Vergnaud [15] and Seo and Emura [24], respectively.
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Lattice-based cryptography, believed to be secure in a quantum computer at-
tack environment, enjoys some competive advantages over conventional number-
theoretic cryptography, such as simpler arithmetic operations and proven secure
based on the worst-case hardness assumptions. Following the model of [4], the
first lattice-based RIBE scheme without DKER, the first schemes with bounded
DKER and unbounded DKER and an adaptively secure scheme in the quantum
random oracle model were proposed by Chen et al. [7], Takayasu and Watanabe
[29], Katsumata et al. [11] and Takayasu [28], respectively.

Cloud-based technology, including cloud computing and cloud storage, etc.,
has already created a new generation of computing paradigm, and with a flexible
assistance of cloud (e.g., irrespective of time and location), many conventional
costly computations and bulky storages can be performed with ease. Therefore,
introducing cloud computing services into RIBE is an interesting idea to alleviate
the workloads of PKG and each user. The study of outsourcing RIBE (O-RIBE)
was initiated by Li et al. [13], in which a semi-trusted key update cloud service
provider is adopted to update each user’s time key. Though Liang et al. [14]
attempted to solve the same problems as in this work with proxy re-encryption
technique, their scheme is insecure to resist the re-encryption key forgery attack
and collusion attack [30]. To overcome the decryption challenges for users only
with limited resources, Qin et al. [21] introduced a new revocation method called
server-aided RIBE (SA-RIBE), contrary to previous O-RIBE, all workloads on
users are now outscourced to the cloud server. Inspired by these two new models,
Nguyen et al. [20] and Dong et al. [9] respectively designed the first lattice-based
SA-RIBE scheme and the first lattice-based O-RIBE scheme. Recently, the generic
constructions of RIBE with complete subset (CS) method and subset difference
(SD) method were respectively proposed by Ma and Lin [16] and Lee [12].

Our Contributions. In this paper, we introduce two (and the first) con-
structions of lattice-based RIBE-CE. We inherit and extend the main efficiency
and security advantages of Sun et al.’s model for RIBE: the system users do not
have to store each time update key, as they can utilize the current short-term
decryption key to decrypt all ciphertexts sent to him, meanwhile, the revoked
users cannot access to both the previously and subsequently shared data in the
cloud. Furthermore, PKG maintains a BT and adopts the CS method to handle
key revocation with a logarithmic complexity workload in time key update, not
growing linearly in the numbers of system users as in Sun et al. [27]. As for
previous lattice-based RIBE schemes [7,20,29,11,28], our two constructions only
work for one-bit message, but the multi-bit version can be achieved by adopting
a standard transformation technique showed in [10,1]. As in [7,29,9,11,28], the
public parameters almost enjoy the same asymptotic efficiency, though the bit-
size of our final ciphertext in our two schemes is linear in the length of identity
id, while all ciphertexts (the secure data) are stored in cloud, thus for the local
users the storage cost is not a challenge. More startlingly, our two schemes are
naturally SA-RIBE as [20] in which the recipient does not need to communicate
with PKG for time update key, thus the recipient enjoys a lower decryption cost.
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As in [20], each user’s long-term private key of our second scheme is a trap-
door matrix, thus having a relatively large bit-size, but constant in the number
of system users. In particular, the later scheme satisfies DKER, a default secu-
rity requirement for RIBE, which is not considered by Sun et al.. A detailed
comparison among the schemes [7,20,29,11,28] and ours is shown in Table 1.

As a high level, the design method of our first lattice-based RIBE-CE scheme
is similar to the pairing-based concrete construction of Sun et al., and a double
encryption mechanism is also adopted as the core building block. In our second
scheme, instead of only using a conventional IBE scheme as in Sun et al., a lattice-
based two-level hierarchical IBE (HIBE) scheme [1] is introduced, from which the
PKG can issue a long-term private key (a trapdoor matrix, not a vector) to each
user id. This technique enables a user id with a long-term private key to derive
partial short-term decryption key corresponding to his identity id and time t all
by himself, and thus achieving DKER.

Table 1. Comparison of Lattice-Based RIBE Schemes.

Schemes |pp| |skid| |ukt| |dkid,t| |ctid,t| CE DKER Model

[7] Õ(n2) Õ(n2) O(r log N
r
) · Õ(n) Õ(n) Õ(n) no no Standard

[20] Õ(n2) Õ(n2) O(r log N
r
) · Õ(n) Õ(n) Õ(n) no Unbounded Standard

[29] Õ(n2) d · Õ(n2) O(r log N
r
) · Õ(n) Õ(n) Õ(n) no Bounded Standard

[11] Õ(n2) Õ(n2) O(r log N
r
) · Õ(n) Õ(n) Õ(n) no Unbounded Standard

[28] Õ(n2) d · Õ(n2) O(r log N
r
) · Õ(n) Õ(n) Õ(n) no Bounded Quantum ROM

Ours-1 Õ(n2) Õ(n) O(r log N
r
) · Õ(n) Õ(n) Õ(n2) yes no Standard

Ours-2 Õ(n2) Õ(n2) O(r log N
r
) · Õ(n) Õ(n) Õ(n2) yes Unbounded Standard

Note: n is a security parameter, N = 2n is the maximum numbers of system users, r
is the number of revoked users, d is the number of private keys stored in each node
over path(id); | · | denotes the bit-size, pp is public parameters, skid is long-term private
key, ukt is time update key, dkid,t is short-term decryption key, and ctid,t is ciphertext;
CE denotes ciphertext evolution and ROM denotes random oracle model.

Furthermore, looking into the details on time key update. The PKG in Sun et
al. [27] issues a time update key for each non-revoked user with a conventional
IBE scheme, and thus the workload of PKG grows linearly in the numbers of the
non-revoked users. Instead, we adapt the classical BT-based revocation mecha-
nism [19] to obtain a logarithmic complexity workload of PKG which serves as
one solution to the challenge proposed by Sun et al., and an extended cipher-
text design technique recently employed by Ma and Lin [16], which works as
follows: the sender encrypts a message under a HIBE scheme and an IBE scheme
corresponding to the time and node pairs (t, θ) where θ ∈ path(id) and the recip-
ient id is assigned to a leaf node in BT. Given a user revocation list (RL), PKG
computes the time update key under the IBE scheme corresponding to the time
and node pairs (t, θ′) where θ′ ∈ KUNode(BT,RL, t) denotes all the non-revoked
children of revoked id with t, only a non-revoked id at t can derive a short-term
decryption key consisting of two parts, which are corresponding to the two-level
HIBE and the unique node θ ∈ path(id)∩KUNode(BT,RL, t). Unfortunately, the
bit-size of final ciphertext in our constructions is linear in the length of id.
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The security of our lattice-based RIBE-CE schemes rely on a lattice-based IBE
scheme [1] and a lattice-based double encryption scheme employed by Nguyen
et al. [20] in the design of lattice-based SA-RIBE. The constructions are selec-
tively secure in the standard model for our two schemes based on the hardness
assumption of the learning with errors (LWE) problem.

Organization. The organization of the paper is as follows. In Section 2, we
review the definition of RIBE-CE and some background knowledge on lattices. A
lattice-based RIBE-CE scheme without DKER and a scheme with DKER in the
standard model are described and analyzed in Sections 3 and 4, respectively. In
the final Section 5, we conclude our whole paper.

2 Definition and Security Model

Table 2 refers to the notations used in this paper.

Table 2. Notations of This Paper.

Notation Definition

a,A Vectors, matrices
$←− Sampling uniformly at random

∥ · ∥, ∥ · ∥∞ Euclidean norm ℓ2, infinity norm ℓ∞
⌈e⌉, ⌊e⌉ The smallest integer not less than e, the integer closet to e

O, Õ, ω Standard asymptotic notations

log e Logarithm of e with base 2

ppt Probabilistic polynomial-time

2.1 RIBE with Server-Aided Ciphertext Evolution

We first review the definition and security model of RIBE-CE introduced by Sun
et al. [27]. An RIBE-CE is an extension of RIBE that supports key revocation, and
additionally it delegates ciphertext evolution to a cloud server (Cloud). A trusted
center first issues a master secret key (msk) and public parameters (pp). The PKG
issues a long-term private key skid for each system user id and a time update
key ukt with time t by using msk, meanwhile, it distributes ukt to Cloud (and all
users) and maintains a revocation list (RL) to record the state information on
revoked users. The Cloud periodically transforms a ciphertext for id with t into
a new one for t′ > t by using ukt. To decrypt a ciphertext which specifies an
identity id and a time t, the non-revoked recipient combines his long-term private
key skid and current time update key ukt to derive a short-term decryption key
dkid,t. The system model of RIBE-CE is shown in Fig. 1.

Definition 1. An RIBE-CE scheme involves four distinct entities: PKG, a cloud
server Cloud, sender and recipient, associated with identity space I, time space
T (time is treated as discrete and the size of T is polynomial in the security
parameter) and message space M, and consists of eight polynomial-time ( pt)
algorithms which are described as follows:
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Fig. 1. System Model of RIBE-CE.

− Setup(1n, N): The setup algorithm is run by PKG, and it takes as input a
security parameter n and the maximal number of system users N . It outputs
a master secret key msk, the public parameters pp, a user revocation list RL
(initially empty), and a state st. Note: msk is kept in secret by PKG and pp
is made public and as an implicit input of all other algorithms.

− PriKeyGen(msk, id, st): The key generation algorithm is run by PKG, and it
takes as input an identity id, the master secret key msk, and a state st. It
outputs a long-term private key skid and an updated state st. Note: skid is
sent to the recipient via a secret channel.

− KeyUpd(RL, t,msk, st): The key update algorithm is run by Cloud, and it takes
as input current revocation list RL, a time t, the master secret key msk, and
a state st. It outputs a time update key ukt. Note: ukt is sent to Cloud and all
users via a public channel.

− DecKeyGen(skid, ukt, t): The decryption key derivation algorithm is run by the
recipient id, and it takes as input a long-term private key skid, a corresponding
time update key ukt (or ⊥), and the current time t. It outputs a short-term
decryption key dkid,t (or ⊥ indicating that the recipient id was revoked).

− Encrypt(id, t,m): The encryption algorithm is run by the sender, and it takes
as input a recipient’s identity id, an encryption time t, and a message m. It
outputs a ciphertext ctid,t.

− Evolve(ctid,t, t
′, ukt): The ciphertext evolution algorithm is run by Cloud, and

it takes as input a ciphertext ctid,t with identity id and time t, a new time
t′ > t, and the current time update key ukt. It outputs a new ciphertext ctid,t′ .
Note: If id has been revoked at time t, the ciphertext remains unchanged.

− Decrypt(dkid′,t′ , ctid,t): The decryption algorithm is run by the recipient, and
it takes as input a ciphertext ctid,t and a decryption key dkid′,t′ . It outputs a
message m ∈M, or a symbol ⊥.
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− Revoke(id, t,RL, st): The revocation algorithm is run by PKG, and it takes as
input the current revocation list RL, an identity id, a revoked time t, and a
state st. It outputs an updated revocation list RL = RL∪{(id, t)}. Note: a copy
of RL will be sent to Cloud via a public channel.

The correctness of an RIBE-CE scheme is described as follows: for all pp, msk,
RL, and st generated by Setup(1n, N), skid generated by PriKeyGen(msk, id, st) for
id ∈ I, ukt generated by KeyUpd(RL, t,msk, st) for t ∈ T and RL, ctid,t generated
by Encrypt(id, t,m) for id ∈ I, t ∈ T and m ∈ M, and ctid,t′ generated by
Evolve(ctid,t, t

′, ukt), then it is required that:

− If (id, t′) /∈ RL for all t′ ≤ t, then DecKeyGen(skid, ukt, t) = dkid,t.

− If (id, t′) /∈ RL for all t′ < t, then Evolve(ctid,t′ , t, ukt) = ctid,t.

− If (id = id′) ∧ (t = t′), then Decrypt(dkid′,t′ , ctid,t) = m.

Since RIBE-CE is an extension of RIBE, the indistinguishability under chosen-
plaintext attack (ind-cpa) security of RIBEmust be satisfied to guarantee message
hiding security against an inside attacker A0 who owns a long-term private key
(e.g., a revoked user), and an outside attacker A1 who knows all time update
keys (e.g., the cloud server Cloud).

Sun et al. [27] defined the security against adaptive-revocable-identity-time
chosen-plaintext attacks for RIBE-CE. Here, we only consider selective-revocable-
identity-time security (a weaker notion initially was suggested in RIBE by Boldyre-
va et al. [4], subsequently by Chen et al. [7], Nguyen et al. [20] and Katsumata et
al. [11], in which an adversary A (A0 or A1) sends a challenge identity and time
pair (id∗, t∗) to the challenger C before the execution of Setup(1n, N). A slight
difference is that we formalize the ind-cpa security adopting a game capturing a
stronger privacy property called indistinguishable from random as defined in [1]
and a stronger security property called DKER defined in [24].

In our ind-cpa security model of RIBE-CE, the attacker can request long-
term private key, time update key, revocation, short-term decryption key (as in
Sun et al., in our first construction, there is also no this query), and ciphertext
evolution queries. One of the most restrictions of this model is that if the attacker
has requested a long-term private key for the challenge identity id∗, then id∗

must be revoked before (or at) the time update key query of challenge time t∗.
Finally, the goal of the attacker is to determine that the challenge ciphertxet is
completely random, or correctly encrypted on the challenge m∗ corresponding
to (id∗, t∗). A detailed definition is described as follows:

Definition 2. The ind-cpa security of RIBE-CE is shown in the following game:

− Intial: The adversary A first declares a challenge identity and time pair (id∗, t∗).
− Setup: The challenger C runs Setup(1n, N) to obtain (msk, pp,RL, st). Note:

RL is initially empty, C keeps msk in secret by himself and provides pp to A.
− Query phase 1: The query-answer between A and C is described in Table 3. Re-

mark: PriKenGen(·),KeyUpd(·),Revoke(·),DecKeyGen(·) and CE share st and
the queries should be with some restrictions defined later. The DecKeyGen(·)
oracle is used to define DKER for our second scheme, which has not been
provided by Sun et al..
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Table 3. The Query-Answer between A and C.

PriKenGen(·) KeyUpd(·) Revoke(·) DecKeyGen(·) CE

A id RL, t RL, id, t id, t ctid,t, t, t
′

C skid ukt RL = RL ∪ {(id, t)} dkid,t ctid,t′

− Challenge: A submits a message m∗ ∈ M. C samples a bit b
$←− {0, 1}. If

b = 0, C returns a challenge ciphertext ct∗id∗,t∗ by running Encrypt(id∗, t∗,m∗),

otherwise, a random ct∗id∗,t∗
$←− U .

− Query phase 2: A can continue to make additional queries as before with the
same restrictions.

− Guess: A outputs a bit b∗ ∈ {0, 1}, and wins if b∗ = b.

In the above game, the following restrictions should be satisfied:

− KeyUpd(·) and Revoke(·) must be queried in a non-decreasing order of time.

− Revoke(·) cannot be queried at t if KeyUpd(·) has been queried at t.

− Revoke(·) must be queried on (id∗, t) for t ≤ t∗ if PriKenGen(·) has been
queried on id∗.

− DecKeyGen(·) cannot be queried at t if KeyUpd(·) was not queried at t.

− DecKeyGen(·) cannot be queried on (id∗, t∗), and in CE query, t′ > t.

A’s advantage is defined as Advind-cpaRIBE-CE,A(n) = |Pr[b∗ = b]−1/2|. An RIBE-CE

scheme is secure if Advind-cpaRIBE-CE,A(n) is negligible in the security parameter n.

2.2 Lattices

In this subsection, we recall the knowledge on integer lattices.

Definition 3. Given n, m, q ≥ 2, a random A ∈ Zn×m
q , and u ∈ Zn

q , the m-

dimensional q-ary orthogonal lattice Λ⊥
q (A) (and its shift Λu

q (A)) is defined as:

Λ⊥
q (A) = {e ∈ Zm | A ·e = 0 mod q} and Λu

q (A) = {e ∈ Zm | A ·e = u mod q}.
The discrete Gaussian distribution over Λ with the center c ∈ Zm and a

Gaussian parameter s > 0 is denoted as DΛ,s,c, and we omit the subscript and
denote it as DΛ,s if c = 0.

Lemma 1 ([10]). For integers n, q ≥ 2, m ≥ 2n⌈log q⌉, assume that the
columns of a random A ∈ Zn×m

q generates Zn
q , let ϵ ∈ (0, 1/2) and s ≥ ηϵ(Λ

⊥(A)),
then the followings hold:

1. For e
$←− DZm,s, the statistical distance between u = A · e mod q and

u′ $←− Zn
q is at most 2ϵ.

2. For e
$←− DZm,s, then Pr[∥e∥∞ ≤ ⌈s·logm⌉] holds with a larger probability.

3. The min-entropy of DZm,s is at least m− 1.

A ppt trapdoor generation algorithm returning a statistically close to uniform
A ∈ Zn×m

q together with a low Gram-Schmidt norm basis for Λ⊥
q (A) plays a key

role in lattice-based cryptography. The algorithm was first introduced by Ajtai
[2], and two improvements were investigated in [3,18].
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Lemma 2 ([2,3,18]). Let n ≥ 1, q ≥ 2, m = 2n⌈log q⌉, there is a ppt algorithm
TrapGen(q, n,m) that returns A ∈ Zn×m

q statistically close to an uniform matrix

in Zn×m
q and a trapdoor RA for Λ⊥

q (A).
Gentry et al. [10] showed an algorithm to sample short vectors (or matrices)

from a discrete Gaussian distribution, and an improvement was given in [18].
Meanwhile, to delegate a trapdoor for a super-lattice was given in [6].
Lemma 3 ([10,18]). Let n ≥ 1, q ≥ 2, m = 2n⌈log q⌉, given A ∈ Zn×m

q ,

a trapdoor RA for Λ⊥
q (A), a parameter s = ω(

√
n log q log n), and a vector

u ∈ Zn
q , there is a ppt algorithm SamplePre(A,RA,u, s) returning a shorter

vector e ∈ Λu
q (A) sampled from a distribution statistically close to DΛu

q (A),s.

Lemma 4 ([6]). Let q ≥ 2, m = 2n⌈log q⌉, given A ∈ Zn×m
q who can gen-

erate Zn
q , a basis RA ∈ Zm×m for Λ⊥

q (A), a random A′ ∈ Zn×m′

q , there is

a deterministic algorithm ExtBasis(RA,A∗ = A|A′) returning a basis RA∗ ∈
Z(m+m′)×(m+m′) for Λ⊥

q (A
∗), especially, RA, RA∗ are with equal Gram-Schmidt

norm. Note: the result holds for any given permutation of all columns of A∗.

Lemma 5 ([6]). Let n ≥ 1, q ≥ 2, m = 2n⌈log q⌉, s ≥ ∥R̃A∥ ·ω(
√
log n), RA ∈

Zm×m is a basis for Λ⊥
q (A), there is a ppt algorithm RandBasis(RA, s) returning

a new basis R′
A ∈ Zm×m and ∥R′

A∥ ≤ s ·
√
m. In particular, for two basis

matrices R
(1)
A and R

(2)
A for Λ⊥

q (A), and s ≥ max{∥R̃(1)
A ∥, ∥R̃

(2)
A ∥} · ω(

√
log n),

RandBasis(R
(1)
A , s) is statistically close to RandBasis(R

(2)
A , s).

Lemma 6 ([1]). Let q > 2, m > n, A ∈ Zn×m
q , A′ ∈ Zn×m′

q , and s > ∥R̃A∥ ·
ω(

√
log(m+m′)), given a trapdoor RA for Λ⊥

q (A) and u ∈ Zn
q , there is a ppt

algorithm SampleLeft(A|A′,RA,u, s) returning a shorter e ∈ Z2m sampled from
a distribution statistically close to DΛu

q (A|A′),s.

Lemma 7 ([1]). Let q > 2, m > n, A, B ∈ Zn×m
q , s > ∥R̃B∥ · O(

√
m) ·

ω(
√
logm), given a trapdoor RB, a low-norm R ∈ {−1, 1}m×m, and u ∈ Zn

q ,
there is a ppt algorithm SampleRight(A,B,R,RB,u, s) returning a shorter e ∈
Z2m distributed statistically close to DΛu

q (F),s, where F = [A|AR+B].

We recall the learning with errors (LWE) problem introduced by Regev [22].

Definition 4. The LWE problem is defined as follows: given s
$←− Zn

q , a distri-

bution χ over Z, let As,χ be the distribution (A,A⊤s + e) where A
$←− Zn×m

q ,

e
$←− χm, and to make distinguish between As,χ and U $←− Zn×m

q × Zm
q . Let

β ≥
√
n · ω(log n), for a prime power q, given a β-bounded χ, the LWE problem

is as least as hard as the shortest independent vectors problem SIVPÕ(nq/β).

An injective encoding function H : Zn
q → Zn×n

q is adopted for our RIBE-CE
schemes. An explicit design called encoding with full-rank differences (FRD) was
proposed by Agrawal et al. [1].

Definition 5. Let n > 1, prime q ≥ 2, an injective encoding function H : Zn
q →

Zn×n
q is called FRD if:

1. For ∀e1, e2 ∈ Zn
q , e1 ̸= e2, H(e1)−H(e2) ∈ Zn×n

q is full-rank.

2. H can be computed in a polynomial time, i.e., O(n log q).
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Two followings two facts will be used in the security proofs of this work.

Lemma 8 ([1]). Let n ≥ 1, prime q > 2, m > (n + 1) log q + ω(log n), A
$←−

Zn×m
q , B

$←− Zn×k=poly(n)
q , and R

$←− {−1, 1}m×k mod q. Then, for all w ∈
Zm
q , (A,AR,R⊤w) is statistically close to (A,B,R⊤w).

Lemma 9 ([1]). Let R
$←− {−1, 1}m×m and w ∈ Rm, Pr[∥R ·w∥∞ > ∥w∥∞ ·√

m · ω(
√
logm)] < negl(m).

3 Our Lattice-Based RIBE-CE Scheme without DKER

Our first RIBE-CE scheme adopts a lattice-based IBE scheme [1] from which the
PKG issues a long-term private key to each user id and a time update key to Cloud
for ciphertext evolution, a classical BT revocation mechanism [19] to alleviate
the load of PKG (a logarithmic complexity and a user id is viewed as a leaf node
of BT, each node in BT has an identifier which is a fixed and unique binary
string*, and an extended ciphertext design method [16] to resolve the problem
of the same state information of BT is used in PriKeyGen(·) and KeyUpd(·).

3.1 Description of the Scheme

As in Sun et al. [27], our lattice-based RIBE-CE scheme also consists of eight pt
algorithms: Setup, PriKeyGen, KeyUpd, DecKeyGen, Encrypt, Evolve, Decrypt and
Revoke. The main algorithms are described as follows:

− Setup(1n, N): On input a security parameter n and the maximal number of

users N = 2n, set prime modulus q = Õ(n3), dimension m = 2nk where

k = ⌈log q⌉, Gaussian parameter s = Õ(m) and norm bound β = Õ(
√
n)

for a distribution χ. PKG specifies the following steps:

1. Let identity space I = 0||{0, 1}n, time space T ⊂ 0||{0, 1}n, and message
spaceM = {0, 1}.

2. Run TrapGen(q, n,m) to generate A ∈ Zn×m
q with a trapdoor RA, and

B ∈ Zn×m
q with a trapdoor RB.

3. Sample a collision-resistance hash function G : {0, 1}∗ → Zn
q , and an FRD

function H : Zn
q → Zn×n

q .

4. Sample A0,A1,B0,B1
$←− Zn×m

q , v
$←− Zn

q , and U
$←− Zn×k

q .

5. Set the sate st = BT that BT is with at least N leaf nodes, and the initial
revocation list RL = ∅.

* Set an identifier of the root node (root) as 0, and an identifier of other node is as-
signed as follows: each edge in BT is assigned with 0 or 1 depending on whether
it is connected to a left or right child node, thus an identifier of each node is de-
fined as all labels of edges in the path from root to this node. Obviously, each user
id = (0, id1, id2, · · · , idlogN ) ∈ 0||{0, 1}logN is with a path path(id), where N is the
maximal number of system users. Additionally, the detailed description of KUN-
odes(BT,RL,t) algorithm is omitted in this paper and any interested readers please
refer to [4,7,24,21,20,9].
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6. Set pp = (A,A0,A1,B,B0,B1,v,U,G,H), and msk = (RA,RB).

7. Output (pp,msk,RL, st) where msk is kept in secret by PKG, and pp is
made public and as an implicit input of all other algorithms.

− PriKeyGen(msk, id, st): On input an identity id ∈ I, the master secret key msk
and the state st. PKG specifies the following steps:

1. View id as an unassigned leaf node of BT, thus, id ∈ 0||{0, 1}n.
2. Define Aid = [A|A0 +H(G(id))A1] ∈ Zn×2m

q .

3. Run SampleLeft(Aid,RA,v, s) to generate eid ∈ Z2m satisfying Aid · eid =
v mod q.

4. Output an updated state st, and skid = eid. Note: skid is sent to user id via
a secret channel.

− KeyUpd(RL, t,msk, st): On input a time t ∈ T , the master secret key msk, a
revocation list RL and the state st. PKG specifies the following steps:

1. For θ ∈ KUNodes(BT,RL, t), defineBtθ = [B|B0+H(G(t||θ))B1] ∈ Zn×2m
q .

2. Run SampleLeft(Btθ ,RB,U, s) to generate Eθ ∈ Z2m×k satisfying Btθ ·
Eθ = U mod q.

3. Output ukt = (θ,Eθ)θ∈KUNodes(BT,RL,t).

− DecKeyGen(skid, ukt, t): On input a long-term private key skid = eid, a time t
and current time update key ukt = (θ,Eθ)θ∈KUNodes(BT,RL,t). The recipient
id specifies the following steps:

1. If path(id) ∩ KUNodes(BT,RL, t) = ∅, return ⊥ and abort.

2. Otherwise, select θ ∈ (path(id)∩KUNodes(BT,RL, t)) (only one θ exists).

3. Return dkid,t = (eid,Eθ).

− Encrypt(id, t,m): On input an identity id ∈ I, a time t ∈ T , and a message
m ∈ {0, 1}. The sender will specify the following steps:

1. Let Aid = [A|A0 +H(G(id))A1] ∈ Zn×2m
q .

2. For θ ∈ path(id), define Bidθ,t = [B|B0 +H(G(t||θ))B1] ∈ Zn×2m
q .

3. Sample s0, s
′
0

$←− Zn
q , e0

$←− χ, e′0
$←− χk, e1, e

′
1

$←− χm, and R1,R2
$←−

{1,−1}m×m.

4. Let c0 = vTs0 + e0 +m⌊ q2⌋ mod q ∈ Zq, c1 = AT
ids0 +

[
e1

RT
1 e1

]
∈ Z2m

q .

5. Let c′0 = UTs′0 + e′0 + bin(c0)⌊ q2⌋ mod q ∈ Zk
q , c2,θ = BT

idθ,ts
′
0 +

[
e′1

RT
2 e

′
1

]
∈

Z2m
q . Note: a binary decomposition function bin : Zq → {0, 1}k is adopted

here, and for all e ∈ Zq we have that e = (1, 2, · · · , 2k−1) · bin(e).
6. Output ctid,t = (id, t, c′0, c1, (c2,θ)θ∈path(id) ∈ (0||{0, 1}n)2×Zk

q×(Z2m
q )n+2.

− Evolve(ctid,t, t
′, ukt): On input a ciphertext ctid,t = (id, t, c′0, c1, (c2,θ)θ∈path(id),

a new t′ > t, and the current time update key ukt = (θ,Eθ)θ∈KUNodes(BT,RL,t).
The Cloud specifies the following steps:

1. If the recipient of ctid,t has been revoked before (or at) time t, set ctid,t′ =
ctid,t.
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2. Otherwise, compute w0 = c′0−ET
θ · c2,θ mod q ∈ Zk

q , here, θ ∈ (path(id)∩
KUNodes(BT,RL, t)).

3. Compute c0 = (1, 2, · · · , 2k−1) · ⌊ 2qw0⌋ ∈ Zq.

4. Sample s′′0
$←− Zn

q , e
′′
0

$←− χk, e′′1
$←− χm, and R′

2
$←− {1,−1}m×m.

5. For θ ∈ path(id), define Bidθ,t′ = [B|B0 +H(G(t′||θ))B1] ∈ Zn×2m
q .

6. Let c′′0 = UTs′′0 + e′′0 + bin(c0)⌊ q2⌋ mod q ∈ Zk
q , and c′2,θ = BT

idθ,t′s
′′
0 +[

e′′1
R

′T
2 e′′1

]
mod q ∈ Z2m

q .

7. Output ctid,t′ = (id, t′, c′′0 , c1, (c
′
2,θ)θ∈path(id) ∈ (0||{0, 1}n)2×Zk

q×(Z2m
q )n+2.

− Decrypt(dkid′,t′ , ctid,t): On input a ciphertext ctid,t = (id, t, c′0, c1, (c2,θ)θ∈path(id)
and a decryption key dkid′,t′ . The recipient id

′ specifies the following steps:

1. If (id ̸= id′) ∨ (t ̸= t′), return ⊥ and abort.

2. Otherwise, compute w0 = c′0−ET
θ · c2,θ mod q ∈ Zk

q , here, θ ∈ (path(id)∩
KUNodes(BT,RL, t)).

3. Compute c0 = (1, 2, · · · , 2k−1) · ⌊ 2qw0⌉ ∈ Zq, and w = c0 − eTidc1 ∈ Zq.

4. Output ⌊ 2qw⌉ ∈ {0, 1}.
− Revoke(id, t,RL, st): On input current revocation list RL, an identity id, a time

t, and a state st = BT. PKG specifies the following steps:

1. Add (id, t) to RL for all nodes associated with id.

2. Output an updated RL = RL ∪ {(id, t)}.

3.2 Analysis

We analysis the efficiency, correctness and security of our lattice-based RIBE-CE
scheme without DKER.

Efficiency: The efficiency aspect of our lattice-based RIBE-CE without DKER with
N = 2n is as follows:
− The bit-size of public parameters pp is (6nm+ n+ nk + 2n) log q = Õ(n2).

− The long-term private key skid has a short vector of bit-size Õ(n).
− The time update key ukt has bit-size O(r log N

r ) · Õ(n) where r is the number
of revoked users.

− The ciphertext ctid,t has bit-size 2(n+ 1) + (k + 2m(n+ 2)) log q = Õ(n2).

− The short-term decryption key dkid,t has bit-size Õ(n).
Correctness: If the first lattice-based RIBE-CE scheme is operated correctly as
specified, and a recipient id is not revoked at time t ∈ T , then dkid,t = (eid,Eθ)
satisfies Aid ·eid = v mod q and Btθ ·Eθ = U mod q. In the decryption algorithm,
the non-revoked id tries to derive m by using dkid,t:

Given a ciphertext (no matter an original or evolutive ciphertext) ctid,t =
(id, t, c′0, c1, (c2,θ)θ∈path(id).

1. Parse c2,θ =

[
c2,0
c2,1

]
where c2,i∈{0,1} ∈ Zm

q , θ ∈ (path(id)∩KUNodes(BT,RL, t)).

2. Compute
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w0 = c′0 −ET
θ c2,θ = UTs′0 + e′0 + bin(c0)⌊

q

2
⌋ −ET

θ

[
c2,0
c2,1

]
= bin(c0)⌊

q

2
⌋+ e′0 −ET

θ

[
e′1

RT
2 e

′
1

]
︸ ︷︷ ︸

error′

According to our parameters settings, it can be checked that the error
term error′ is bounded by q/5 (i.e., ∥error′∥∞ < q/5), thus, we have the
conclusion (1, 2, · · · , 2k−1) · ⌊ 2qw0⌉ = c0 with overwhelming probability.

3. Parse c1 =

[
c1,0
c1,1

]
where c1,i∈{0,1} ∈ Zm

q , and compute

w = c0 − eTidc1 = vTs0 + e0 +m⌊q
2
⌋ − eTid

[
c1,0
c1,1

]
= m⌊q

2
⌋+ e0 − eTid

[
e1

RT
1 e1

]
︸ ︷︷ ︸

error

According to our parameters settings, it can be checked that the error
term error is bounded by q/5 (i.e., ∥error∥∞ < q/5), thus, we have the
conclusion ⌊ 2qw⌉ = m with overwhelming probability.

Theorem 1. Our lattice-based RIBE-CE without DKER is ind-cpa secure if the
LWE assumption holds.

Proof. To proof this theorem, we define a list of games where the first one is
identical to the original ind-cpa game as in Definition 2 and show that a ppt
adversary A has advantage zero in the last game. We show that A cannot dis-
tinguish between these games, and thus A has negligible advantage in winning
the original ind-cpa game. In particular, the LWE hardness assumption is adopted
to prove that Game 2 and Game 3 are indistinguishable.

Let id∗ be a challenge identity and t∗ be a challenge time, we consider two
types of adversaries:
− Type-0: An inside adversary A0 who requests a long-term private key on

the challenge identity id∗. In this case, id∗ must be revoked at t ≤ t∗.
− Type-1: An outside adversary A1 who only requests a long-term private

key on the identity id ̸= id∗.
For Type-0 adversary, we simulate the game as follow:

Game 0. It is the original ind-cpa game defined in Definition 2.
Game 1. We slightly change the way that C0 generates B0 in pp. C0 samples

R∗
2

$←− {1,−1}m×m mod q at the setup phase, and defines B0 = BR∗
2 −

H(G(t∗||θ))B1 mod q. For the remainders, they are unchanged and identical to
those in Game 0. Next, we show that Game 0 and Game 1 are indistinguishable.
In Game 1, R∗

2 is used only in the designs of B0, R
∗T
2 e′1. According to Lemma

8, (B,BR∗
2,R

∗T
2 e′1) is statistically close to (B,C0,R

∗T
2 e′1), where C0

$←−
Zn×m
q . In A0’s view, BR∗

2 is statistically close to uniform, and thus B0 is
close to uniform. Hence, B0 in Game 1 and Game 0 are indistinguishable.

Game 2: We redesignB andB1. C0 samplesB
$←− Zn×m

q and runs TrapGen(q, n,m)
to obtain B1 with a trapdoor RB1 . Let Btθ = [B|BR∗

2 + (H(G(t||θ)) −
H(G(t∗||θ∗)))B1], due to the collision-resistance property of G and the main
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property of FRD, H(G(t||θ)) − H(G(t∗||θ∗)) is full-rank, and RB1 is also a
trapdoor for Λ⊥

q ((H(G(t||θ)) − H(G(t∗||θ∗)))B1). C0 responds a time update
key query for any t ̸= t∗ (id∗ has been revoked before or at t∗) by run-
ning SampleRight(B, (H(G(t||θ)) − H(G(t∗||θ∗)))B1,R

∗
2,RB1 ,U, s) that re-

turns Eθ∈KUNodes(BT,RL,t). Additionally, the parameter s = Õ(m) is sufficiently
large. According to Lemma 7, Eθ is statistically close to that in Game 1. For
the remainders, they are unchanged and identical to those in Game 1. Because
B and B1 are statistically close to those in Game 1, the advantage of A0 in
Game 2 is at most negligibly different from that in Game 1.

Game 3: We redesign the partial challenge ciphertexts c′∗0 and c∗2,θ, and the
remainders (including c∗1) are unchanged and identical to those in Game 2.

C0 samples c′∗0
$←− Zk

q and c∗2,θ
$←− Z2m

q . Because c′∗0 and c∗2,θ are always
random, the advantage of A0 in returning a correct c0 is zero, and the same
advantage zero for the message m = ⌊ 2q (c0 − eTid∗c

∗
1)⌉ is returned correctly.

A reduction from the LWE problem will be given to show that Game 2 and
Game 3 are computationally indistinguishable for a ppt adversary.
A reduction from LWE: Assume that there is a ppt adversary A0 distinguishing
Game 2 and Game 3 with non-negligible advantage, then we use A0 to design an
algorithm B0 to solve the LWE problem defined in Definition 4.

Given an LWE instance, a fresh pair (ai, bi) ∈ Zn
q × Zq for i = 1, · · · ,m(n+

1)+k, from a sampling oracle, which is truly randomR$ or noisy pseudo-random
Rs′0

for a secret vector s′0 ∈ Zn
q . The target of B0 is to distinguish between the

two oracles by utilizing A0 as follows:
Instance: B0 receives an LWE instance (i.e., (ai, bi), i = 1, · · · ,m(n+ 1) + k).
Setup: B0 does as follows:

1. Assemble B ∈ Zn×m
q from m of the given LWE samples, that is, define

B = [a1|a2| · · · |am].
2.AssembleU ∈ Zn×k

q from the unused samples, defineU = [am+1| · · · |am+k].
3. Run TrapGen(q, n,m) to generate A ∈ Zn×m

q and a trapdoor RA, sample

A0,A1
$←− Zn×m

q , v
$←− Zn

q .
4. Design the remainders of public matrices, B0,B1 ∈ Zn×m

q , as in Game 2
by using id∗, t∗, and R∗

2.
5. Sample a collision-resistance hash function G : {0, 1}∗ → Zn

q , and an FRD
function H : Zn

q → Zn×n
q .

6. Let pp = (A,A0,A1,B,B0,v,B1,U,G,H), and send pp to A1.
Queries: B0 answers a time update key query for t as in Game 2. As B0 knows

the master secret key RA, it can answer a long-term private key query for id
(a shorter vector eid) as in the real game.

Challenge: Once receive a message m∗ ∈M, B0 computes a challenge ciphertext
for id∗ and t∗ as follows:

1. Let Aid∗ = [A|A0 +H(G(id∗))A1] ∈ Zn×2m
q .

2. Sample s0
$←− Zn

q , e0
$←− χ, e1

$←− χm, and R1
$←− {1,−1}m×m.

3. Let c∗0 = vTs0 + e0 +m∗⌊ q2⌋ mod q ∈ Zq, c
∗
1 = AT

id∗s0 +

[
e1

RT
1 e1

]
∈ Z2m

q .
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4. Assemble e′∗1,θ from m of the given LWE samples, define e′∗1,θ =

 b|θ|m+1

...
b|θ|m+m

,
b∗ =

bm(n+1)+1

...
bm(n+1)+k

, where θ ∈ path(id∗) and |θ| denotes the length of θ.

5. Blind the message string by defining c′∗0 = b∗ + bin(c∗0)⌊
q
2⌋ ∈ Zk

q , and

c∗2,θ =

[
e′∗1,θ

R∗T
2 e′∗1,θ

]
∈ Z2m

q .

6. Send ctid∗,t∗ = (id∗, t∗, c′∗0 , c
∗
1, (c

∗
2,θ)θ∈path(id∗)) to A0.

We first show that if the LWE instance is from a noisy pseudo-random Rs′0
,

so (c∗0, c
∗
1) ∈ ctid∗,t∗ enjoys a distribution exactly as in Game 2. First, it can be

checked that Bid∗θ ,t
∗ = [B|BR∗

2]. Second, it can be checked that e′∗1,θ = BTs′0 +

e′1 mod q where e′1
$←− χm. Thus, c∗2,θ enjoys the following structure:

c∗2,θ =

[
e′∗1,θ

R∗T
2 e′∗1,θ

]
=

[
BTs′0 + e′1

(BR∗
2)

Ts′0 +R∗T
2 e′1

]
= BT

id∗θ ,t
∗s′0 +

[
e′1

R∗T
2 e′1

]
mod q,

which implies that c∗2,θ is exactly the c2,θ part of a valid challenge ciphertext in
Game 2.

We then show that if the LWE instance is from a truly random R$, then
(c′∗0 , (c

∗
2,θ)θ∈path(id∗)) ∈ ctid∗,t∗ enjoys a distribution exactly as in Game 3. It can

be checked that b∗ is unform over Zk
q , and e′∗1,θ are unform over Zm

q . Thus, c∗2,θ
is unform and independent over Z2m

q , which implies that c∗2,θ is exactly the c2,θ
part of a valid challenge ciphertext in Game 3.

Guess: After making some additional queries, A0 returns a guess for which chal-
lenger, Game 2 or Game 3, it is interacting with. Then, B0 returns the guess
of A0 as an answer to the given LWE instance.

According to the above analysis, if the LWE instance is from Rs′0
, A0’s view

is as in Game 2, and if the LWE instance is from R$, A0’s view is as in Game 3,
and thus, the advantage of B0 in solving the LWE problem is the same as that
of A0 in distinguishing Game 2 and Game 3.

For Type-1 adversary, we simulate the game as follow:

Game 0. It is the original ind-cpa game defined in Definition 2.

Game 1. We slightly change the way that C1 generates A0 in pp. C1 samples

R∗
1

$←− {1,−1}m×m at the setup phase, let A0 = AR∗
1−H(G(id

∗))A1 mod q.
For the remainders, they are unchanged and identical to those in Game 0.
Next, we show that Game 0 and Game 1 are indistinguishable. In Game 1,
R∗

1 is used only in the designs of A0 and R∗T
1 e1. So, according to Lemma

10, (A,AR∗
1,R

∗T
1 e1) is statistically close to (A,C1,R

∗T
1 e1), where C1

$←−
Zn×m
q . In A1’s view, AR∗

1 is statistically close to uniform, and thus A0 is
close to uniform. Hence, A0 in Game 1 and Game 0 are indistinguishable.
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Game 2: We redesign A, A1. C2 samples A
$←− Zn×m

q and runs TrapGen(q, n,m)
to getA1 with trapdoorRA1

. LetAid = [A|AR∗
0+(H(G(id))−H(G(id∗)))A1],

and due to the collision-resistance property of G and the main property of
FRD, H(G(id)−H(G(id∗)) is full-rank, RA1 is a trapdoor for Λ⊥

q ((H(G(id))−
H(G(id∗)))A1). C1 can respond a long-term private key query for any id ̸=
id∗ by running SampleRight(Aid, (H(G(id))−H(G(id∗)))A1,R

∗
1,RA1 ,v, s) to

generate a short vector eid ∈ Z3m. The parameter s = Õ(m) is sufficiently
large, and according to Lemma 7, eid is statistically close to that in Game 1.
The remainders are unchanged and identical to those in Game 1. A and A1

are statistically close to those in Game 1, the advantage of A1 in Game 2 is
at most negligibly different from that in Game 1.

Game 3: We redesign the partial challenge ciphertexts c∗1 and c′∗0 , and the re-
mainders (including c∗2,θ) are unchanged and identical to those in Game 2.

C1 first samples c∗0
$←− Zq and c∗1

$←− Z3m
q , then set c′∗0 = UTs′0 + e′0 +

bin(c∗0)⌊
q
2⌋ mod q ∈ Zk

q . Because c∗0 and c∗1 are always random, the advantage
of A1 in returning a correct c∗0 is zero, and the same advantage zero for the
message m is returned correctly.

A reduction from the LWE problem will be given to show that Game 2 and
Game 3 are computationally indistinguishable for a ppt adversary.

A reduction from LWE: Assume that there is a ppt A1 distinguishing Games 2
and 3 with non-negligible advantage, then we use A1 to design an algorithm B1
to solve the LWE problem defined in Definition 4.

Given an LWE instance, a fresh pair (ai, bi) ∈ Zn
q ×Zq for i = 1, 2, · · · ,m+1,

from a sampling oracle, which is truly random R$ or noisy pseudo-random Rs0

for a secret vector s0 ∈ Zn
q . The target of B1 is to distinguish between the two

oracles by utilizing A1 as follows:

Instance: B1 receives an LWE instance (i.e., (ai, bi), i = 1, 2, · · · ,m+ 1).

Setup: B1 does as follows:

1. Assemble A ∈ Zn×m
q from m of the given samples, define A = [a1| · · · |am].

2. Assemble v ∈ Zn
q from the unused samples, that is, define v = am+1.

3. Run TrapGen(q, n,m) to generate A1 ∈ Zn×m
q and a trapdoor RA1 , B ∈

Zn×m
q and a trapdoor RB, sample U

$←− Zn×k
q , B0,B1

$←− Zn×m
q .

4. Design A0 ∈ Zn×m
q , as in Game 2 by using id∗ and R∗

1.

5. Sample a collision-resistance hash function G : {0, 1}∗ → Zn
q , and an FRD

function H : Zn
q → Zn×n

q .

6. Let pp = (A,A0,A1,B,B0,v,B1,U,G,H), and send pp to A1.

Queries: B1 answers a long-term private key query for id ̸= id∗ as in Game 2. As
B1 knows the master secret key RB, it can answer a time update key query
for any t (a list of shorter matrices (Eθ)θ∈KUNodes(BT,RL,t)) as in the real game.

Challenge: Once receive m∗, B1 computes a challenge for id∗ and t∗ as follows:

1. Assemble e∗1 from m of the samples, define e∗1 =

 b1
...
bm

, and v∗ = bm+1.
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2. Blind m∗ by defining c∗0 = v∗ +m∗⌊ q2⌋ ∈ Zq, and c∗1 =

[
e∗1

R∗T
1 e∗1

]
∈ Z2m

q .

3. For θ ∈ path(id∗), define Bid∗θ ,t
∗ = [B|B0 +H(G(t∗||θ))B1] ∈ Zn×2m

q .

4. Sample s′0
$←− Zn

q , e
′
0

$←− χk, e′1
$←− χm, and R2

$←− {1,−1}m×m.

5. Let c′∗0 = UTs′0 + e′0 + bin(c∗0)⌊
q
2⌋, and c∗2,θ = BT

id∗θ ,t
s′0 +

[
e′1

RT
2 e

′
1

]
∈ Z2m

q .

6. Send ctid∗,t∗ = (id∗, t∗, c′∗0 , c
∗
1, (c

∗
2,θ)θ∈path(id∗)) to A1.

Obviously, c∗0 can be derived from (c′∗0 , (c
∗
2,θ)θ∈path(id∗)) by using a time up-

date key (Eθ)θ∈KUNodes(BT,RL,t∗). We first show that if the LWE instance is from
a noisy pseudo-random Rs0 , so (c∗0, c

∗
1) enjoys a distribution exactly as in Game

2. First, it can be checked that Aid∗ = [A|AR∗
1] ∈ Zn×2m

q . Second, it can be

checked that e∗1 = ATs0 + e1 mod q, where e1
$←− χm. Thus, c∗1 enjoys the

following structure:

c∗1 =

[
ce∗1

R∗T
1 e∗1

]
=

[
ATs0 + e1

(AR∗
1)

Ts0 +R∗T
1 e1

]
= AT

id∗s0 +

[
e1

R∗T
1 e1

]
mod q,

which implies that c∗1 is exactly the c1 part of a valid challenge in Game 2.
We then show that if the LWE instance is from a truly random R$, so (c∗0, c

∗
1)

enjoys a distribution exactly as in Game 3. It can be checked that v∗ is unform
over Zq, and e∗1 is unform over Zm

q . Thus, c∗1 is unform and independent over
Z2m
q , which implies that c∗1 is exactly the c1 part of a valid challenge ciphertext

in Game 3.
Guess: After making some additional queries, A1 returns a guess for which chal-

lenger, Game 2 or Game 3, it is interacting with. Then, B1 returns the guess
of A1 as an answer to the given LWE instance.

According to the above analysis, if the LWE instance is from Rs0 , A1’s view
is as in Game 2, and if the LWE instance is from R$, A1’s view is as in Game 3,
and thus, the advantage of B1 in solving the LWE problem is the same as that
of A1 in distinguishing Game 2 and Game 3. This completes the proof.

4 Our Lattice-Based RIBE-CE Scheme with DKER

Our RIBE-CE scheme with DKER in the standard model is a combination of a
two-level lattice-based HIBE scheme and an IBE scheme [1] from which the PKG
still issues a long-term private key to each system user id, yet this private key
is a trapdoor matrix, not a shorter vector as in our first scheme. This trapdoor
matrix ensures each user id computing a short-term decryption key (a shorter
vector) for any time period on their own. Similarly, the BT revocation mechanism
is adopted to alleviate the workload of PKG.

4.1 Description of the Scheme

As in our first scheme, our lattice-based RIBE-CE with DKER in the standard
model consists of eight pt algorithms: Setup, PriKeyGen, KeyUpd, DecKeyGen,
Encrypt, Evolve, Decrypt and Revoke. The algorithms are described as follows:
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− Setup(1n, N): On input a security parameter n and the maximal number of

users N = 2n, parameters q,m, k, s and β = Õ(
√
n) are the same as in our

first scheme. PKG specifies the same steps as in our first scheme except it

additionally samples A2
$←− Zn×m

q , and thus:

1. Set pp = (A,A0,A1,A2,B,B0,B1,v,U,G,H), and msk = (RA,RB).
2. Output (pp,msk,RL, st) where msk is kept in secret by PKG, and pp is

made public and as an implicit input of all other algorithms.

− PriKeyGen(msk, id, st): On input an identity id ∈ I, the master secret key msk
and the state st. PKG specifies the following steps:

1. View id as an unassigned leaf node of BT, thus, id ∈ 0||{0, 1}n.
2. Define Aid = [A|A0 +H(G(id))A2] ∈ Zn×2m

q .

3. Run RandBasis(ExtBasis(RA,Aid), s) to generate a trapdoorRAid
for Λ⊥

q (Aid).
4. Output an updated state st, and skid = RAid

.

− KeyUpd(RL, t,msk, st): The same as in our first scheme.
− DecKeyGen(skid, ukt, t): On input a long-term private key skid = RAid

, a time t
and current time update key ukt = (θ,Eθ)θ∈KUNodes(BT,RL,t). The recipient
id specifies the following steps:

1. If path(id) ∩ KUNodes(BT,RL, t) = ∅, return ⊥ and abort.
2. Otherwise, define Aid,t = [Aid|A1 +H(G(t))A2] ∈ Zn×3m

q .
3. Run SampleLeft(Aid,t,RAid

,v, s) to generate eid,t ∈ Z3m satisfying Aid,t ·
eid,t = v mod q.

4. Select θ ∈ (path(id) ∩ KUNodes(BT,RL, t)), and return dkid,t = (Eθ, eid,t).

− Encrypt(id, t,m): On input an identity id ∈ I, a time t ∈ T , and a message
m ∈ {0, 1}. The sender will specify the following steps:

1. Let Aid,t = [A|A0 +H(G(id))A2|A1 +H(G(t))A2] ∈ Zn×3m
q .

2. For θ ∈ path(id), define Bidθ,t = [B|B0 +H(G(t||θ))B1] ∈ Zn×2m
q .

3. Sample s0, s
′
0

$←− Zn
q , e0

$←− χ, e′0
$←− χk, e1, e

′
1

$←− χm, andR0,R1,R2
$←−

{1,−1}m×m.

4. Let c0 = vTs0 + e0 +m⌊ q2⌋ mod q ∈ Zq, c1 = AT
id,ts0 +

 e1
RT

0 e1
RT

1 e1

 ∈ Z3m
q .

5. Let c′0 = UTs′0+e′0+bin(c0)⌊ q2⌋ ∈ Zk
q , and c2,θ = BT

idθ,ts
′
0+

[
e′1

RT
2 e

′
1

]
∈ Z2m

q .

6. Output ctid,t = (id, t, c′0, c1, (c2,θ)θ∈path(id) ∈ (0||{0, 1}n)2 × Zk
q × Z3m

q ×
(Z2m

q )n+1.

− Evolve(ctid,t, t
′, ukt): On input an original ciphertext ctid,t = (id, t, c′0, c1, (c2,θ)θ∈path(id)

or an evolutive ciphertext ctid,t = (id, t′′, t, c′0, c1, (c2,θ)θ∈path(id), a new time
t′ > t > t′′, and the current time update key ukt = (θ,Eθ)θ∈KUNodes(BT,RL,t).
The Cloud specifies the following steps:

1. If the recipient has been revoked before (or at) time t, set ctid,t′ = ctid,t.

2. Otherwise, compute w0 = c′0−ET
θ · c2,θ mod q ∈ Zk

q , here, θ ∈ (path(id)∩
KUNodes(BT,RL, t)).

3. Compute c0 = (1, 2, · · · , 2k−1) · ⌊ 2qw0⌋ ∈ Zq.

4. Sample s′′0
$←− Zn

q , e
′′
0

$←− χk, e′′1
$←− χm, and R′

2
$←− {1,−1}m×m.
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5. For θ ∈ path(id), define Bidθ,t′ = [B|B0 +H(G(t′||θ))B1] ∈ Zn×2m
q .

6. Let c′′0 = UTs′′0 + e′′0 + bin(c0)⌊ q2⌋ ∈ Zk
q , c

′
2,θ = BT

idθ,t′s
′′
0 +

[
e′′1

R
′T
2 e′′1

]
∈ Z2m

q .

7. Output ctid,t′ = (id, t(or t′′), t′, c′′0 , c1, (c
′
2,θ)θ∈path(id) ∈ (0||{0, 1}n)3×Zk

q ×
Z3m
q × (Z2m

q )n+1.
− Decrypt(dkid′,t′ , ctid,t): On input an original ciphertext ctid,t = (id, t, c′0, c1, (c2,θ)θ∈path(id)

or an evolutive ciphertext ctid,t = (id, t′′, t, c′′0 , c1, (c
′
2,θ)θ∈path(id), and a de-

cryption key dkid′,t′ . The recipient id′ needs to specify the following steps:

1. For the original ciphertext ctid,t = (id, t, c′0, c1, (c2,θ)θ∈path(id):
1.1. If (id ̸= id′) ∨ (t ̸= t′), return ⊥ and abort.
1.2. Otherwise, compute w0 = c′0 − ET

θ · c2,θ mod q ∈ Zk
q , here, θ ∈

(path(id) ∩ KUNodes(BT,RL, t)).
1.3. Compute c0 = (1, 2, · · · , 2k−1) · ⌊ 2qw0⌉ ∈ Zq, w = c0 − eTid,tc1 ∈ Zq.

1.4. Output ⌊ 2qw⌉ ∈ {0, 1}.
2. For the evolutive ciphertext ctid,t = (id, t′′, t, c′0, c1, (c2,θ)θ∈path(id):

2.1. If (id ̸= id′) ∨ (t ̸= t′), return ⊥ and abort.
2.2. Otherwise, compute w0 = c′′0 − ET

θ · c′2,θ mod q ∈ Zk
q , here, θ ∈

(path(id) ∩ KUNodes(BT,RL, t)).
2.3. Compute c0 = (1, 2, · · · , 2k−1) · ⌊ 2qw0⌉ ∈ Zq.

2.4. Define Aid,t′′ = [Aid|A1 +H(G(t′′))A2] ∈ Zn×3m
q .

2.5. Run SampleLeft(Aid,t′′ ,RAid
,v, s) to generate eid,t′′ ∈ Z3m satisfying

Aid,t′′ · eid,t′′ = v mod q.
2.6. Define w = c0 − eTid,t′′c1 mod q ∈ Zq.

2.7. Output ⌊ 2qw⌉ ∈ {0, 1}.
− Revoke(id, t,RL, st): The same as in our first scheme.

4.2 Analysis

We analysis the efficiency, correctness and security of our lattice-based RIBE-CE
scheme with DKER in the standard model.
Efficiency: The efficiency aspect of our lattice-based RIBE-CE scheme with DKER
in the standard model and N = 2n is as follows:
− The bit-size of public parameters pp is (7nm+ n+ nk + 2n) log q = Õ(n2).

− The long-term private key skid has a trapdoor matrix of bit-size Õ(n2).

− The time update key ukt has bit-size O(r log N
r ) · Õ(n) where r is the number

of revoked users.
− The ciphertext ctid,t has bit-size 2(n+1)+(k+3m+2m(n+1)) log q = Õ(n2).

− The short-term decryption key dkid,t has bit-size Õ(n).
Correctness: If the first lattice-based RIBE-CE with DKER in the standard model
is operated correctly as specified, and a recipient id is not revoked at time t,
then dkid,t = (Eθ, eid,t) satisfies Btθ · Eθ = U mod q and Aid,t · eid,t = v mod q.
In the decryption algorithm, the non-revoked id tries to derive m by using dkid,t
(sometimes, id also needs to use the long-term private key to derive a new shorter
vector according to a new time):
− If the given ciphertext is an original ciphertext, ctid,t = (id, t, c′0, c1, (c2,θ)θ∈path(id).
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1. Parse c2,θ =

[
c2,0
c2,1

]
where c2,i∈{0,1} ∈ Zm

q and θ ∈ (path(id)∩KUNodes(BT,RL, t)).
2. Compute

w0 = c′0−E
T
θ c2,θ = UTs′0+e′0+bin(c0)⌊

q

2
⌋−ET

θ

[
c2,0
c2,1

]
= bin(c0)⌊

q

2
⌋+e′0 −ET

θ

[
e′1

RT
2 e

′
1

]
︸ ︷︷ ︸

error′
According to our parameters settings, it can be checked that the error term

error′ is bounded by q/5 (i.e., ∥error′∥∞ < q/5), thus, we have the conclusion
(1, 2, · · · , 2k−1) · ⌊ 2qw0⌉ = c0 with overwhelming probability.

3. Parse c1 =

c1,0c1,1
c1,2

 where c1,i∈{0,1,2} ∈ Zm
q , and compute

w = c0−eTid,tc1 = vTs0+e0+m⌊q
2
⌋−eTid,t

c1,0c1,1
c1,2

 = m⌊q
2
⌋+e0 − eTid,t

 e1
RT

0 e1
RT

1 e1


︸ ︷︷ ︸

error
According to our parameters settings, it can be checked that the error term
error is bounded by q/5 (i.e., ∥error∥∞ < q/5), thus, we have the conclusion
⌊ 2qw⌉ = m with overwhelming probability.

− If the given ciphertext is an evolutive ciphertext, ctid,t = (id, t′′, t, c′′0 , c1, (c
′
2,θ)θ∈path(id),

1. Parse c′2,θ =

[
c′2,0
c′2,1

]
where c′2,i∈{0,1} ∈ Zm

q and θ ∈ (path(id)∩KUNodes(BT,RL, t)).
2. Compute

w0 = c′′0−E
T
θ c

′
2,θ = UTs′′0+e′′0+bin(c0)⌊

q

2
⌋−ET

θ

[
c′2,0
c′2,1

]
= bin(c0)⌊

q

2
⌋+e′′0 −ET

θ

[
e′′1

R
′T
2 e′′1

]
︸ ︷︷ ︸

error′′

According to our parameters settings, it can be checked that error′′

is bounded by q/5 (i.e., ∥error′′∥∞ < q/5), thus, we have the conclusion
(1, 2, · · · , 2k−1) · ⌊ 2qw0⌉ = c0 with overwhelming probability.

3. Let Aid,t′′ = [Aid|A1 +H(G1(t′′))A2] ∈ Zn×3m
q .

4. Run SampleLeft(Aid,t′′ ,RAid
,v, s) to generate eid,t′′ ∈ Z3m satisfying Aid,t′′ ·

eid,t′′ = v mod q.

5. Parse c1 =

c1,0c1,1
c1,2

 where c1,i∈{0,1,2} ∈ Zm
q , and compute

w = c0−eTid,t′′c1 = vTs0+e0+m⌊q
2
⌋−eTid,t′′

c1,0c1,1
c1,2

 = m⌊q
2
⌋+e0 − eTid,t′′

 e1
RT

0 e1
RT

1 e1


︸ ︷︷ ︸

error

According to our parameters settings, it can be checked that the error term
error is bounded by q/5 (i.e., ∥error∥∞ < q/5), thus, we have the conclusion
⌊ 2qw⌉ = m with overwhelming probability.

Theorem 2. Our RIBE-CE scheme with DKER in the standard model is ind-cpa
secure if the LWE assumption holds.

Proof. The proof is similar to that in Theorem 1, and due to the limited space,
the details are presented in the full paper.
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5 Conclusion

In this paper, we propose two (and the first) lattice-based RIBE schemes with
server-aided ciphertext evolution. In comparison with previous lattice-based con-
structions of RIBE, our two schemes enjoy a significant advantage in terms of
ciphertext security when considering the scenario of a secure data (i.e., cipher-
text) sharing in the cloud setting and the revoked users cannot access to both
the previously and subsequently shared data. The BT revocation mechanism is
adopted for time key update, thus our three schemes only obtain a logarithmic
complexity workload of the PKG, which serves as one solution to the challenge
posed by Sun et al.. In particular, we remedy the security model and introduce
DKER property into RIBE-CE, a default security requirement for RIBE, which
has not been considered by Sun et al.. Our first and second lattice-based RIBE-
CE schemes are without DKER in the standard model and with DKER in the
standard model, respectively.
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