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Abstract. KNOT is one of the 32 candidates in the second round of
NIST’s lightweight cryptography standardization process. The KNOT
family consists of bit-slice lightweight Authenticated Encryption with
Associated Data (AEAD) and hashing algorithms. In this paper, we
evaluate the security for the initialization phase of two members of the
KNOT-AEAD family by differential-linear cryptanalysis.
More exactly, we analyze KNOT-AEAD(128,256,64) and KNOT-AEAD
(128,384,192) which have 128-bit secret keys. As a result, for 15-round
KNOT-AEAD(128,256,64), our attack takes 248.8 time complexity and
247.5 blocks to recover the full 128-bit key. To the best of our knowledge,
this is the first full key-recovery attack on 15-round KNOT-AEAD(128,
256,64), and it achieves three more rounds compared with the existing
work. Regarding 17-round KNOT-AEAD(128,384,192), time complexity
of 259.2 and data complexity of 258.2 are required to launch a key-recovery
attack, which is five rounds better than the known result. We stress here
that our attacks do not threaten the security of KNOT-AEAD.

Keywords: Differential-Linear cryptanalysis · Lightweight cryptogra-
phy · KNOT.

1 Introduction

The National Institute of Standards and Technology (NIST) is selecting and
standardizing lightweight authenticated encryption and hashing algorithms that
are suitable for use in constrained environments (e.g. sensor networks, health-
care, the Internet of Things). Of the 56 Round 1 candidates, 32 algorithms are
selected by NIST to Round 2, such as [30, 5, 4, 1, 15]. The designers of cryp-
tographic primitives always use the minimum of active S-boxes as the indi-
cator for resistance against differential or linear (hull) attacks. However, this
ignores some powerful variants of differential and linear cryptanalyses, for ex-
ample, differential-linear attacks. It is necessary to carefully evaluate the security
against differential-linear attacks for the lightweight cryptographic algorithms.

Differential[12] and linear[25] attacks are two of the most fundamental tech-
niques of cryptanalysis. It is usually very difficult to find some long enough



differentials and linear approximations for these ciphers which are well designed
against differential and linear attacks. However, in some cases, with a short dif-
ferential and linear approximation, an effective attack might be launched. In
1994, Langford and Hellman [22] firstly showed that a differential of E0 and a
highly biased linear approximation of E1 could be combined into a distinguisher
for the entire cipher E where E was divided into two subciphers E0 and E1

such that E = E1 ◦E0 by a technique called differential-linear cryptanalysis. In
[10], Biham et al. extended and improved this technique to obtain wider scope
of applications. The differential-linear technique was used to attack many cryp-
tographic primitives, such as the block cipher Serpent [11, 19, 24] which was in
the AES finalists, the lightweight authenticated encryption Ascon [18] that was
primary choice in the final portfolio of the CAESAR competition, Chaskey [23, 6]
and ChaCha [2, 16, 6, 17]. In 2017, Blondeau et al. [13] applied the link between
differential and linear attacks and developed a concise theory of the differential-
linear cryptanalysis. Then they gave an exact expression of the bias under the
assumption that the two parts of the cipher were independent. Recently, Bar-on
et al. [3], in EUROCRYPT 2019, presented the Differential-Linear Connectivity
Table (DLCT) to take into account the dependency between two parts of the
cipher, and showed that in many cases, the adversary could exploit it to launch
more effective attacks. Besides, they derived that the DLCT could be constructed
effectively using the Fast Fourier Transform. In CRYPTO 2020, Beierle et al.
[6] presented several improvements in the context of the differential-linear at-
tacks of ARX ciphers and successfully applied them to Chaskey and ChaCha. In
ASIACRYPT 2020, Gutiérrez et al. [20] proposed the differential-linear crypt-
analysis reached 17 rounds of Gimli which was a cryptographic permutation
published at CHES 2017 [8]. Gimli is also the core primitive of a submission to
NIST lightweight cryptography project which is one of the 32 candidates in the
second round.

KNOT [30] is designed by Zhang et al., which is a family of bit-slice lightweight
Authenticated Encryption with Associated Data (AEAD) and hashing algo-
rithms. This family is based on the KNOT permutations which iteratively apply
an SPN round transformation. There are both four members in KNOT-AEAD
and KNOT-Hash and both of their primary members have a state of 256 bits.
In 2019, KNOT was selected by NIST as one of the 32 candidates in the second
round of lightweight cryptography (LWC) standardization process. In the specifi-
cation of KNOT [30], the designers evaluated the security of KNOT permutation
against various attacks, such as (impossible) differential, linear, division crypt-
analysis etc. Later, they [31] further updated the results of security analysis
of KNOT-AEAD and KNOT-Hash. As far as we know, there is no third-party
security analysis yet.

1.1 Our Contributions

In this paper, we evaluate the security for the initialization phase of two members
of the KNOT-AEAD family by some techniques of differential-linear cryptanal-
ysis. Our attacks significantly improve the previous analysis results on them.
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To relieve in certain extent the influence of the dependency between differen-
tial and linear parts in the differential-linear cryptanalysis, the targeted cipher
E is usually divided as E = E′

l ◦ Em ◦ Ed. Since the diffusion layers of KNOT
permutations are very simple, for Em of up to 8 rounds, the determined output
difference at a single bit can be observed when the input difference has only one
non-zero bit. To obtain a differential-linear distinguisher which covers as many
rounds as possible and has higher correlation, our strategy is to restrict the input
difference and output linear mask of Em to be single-bit. The detailed procedure
of searching such differential-linear distinguisher is presented in Section 4.1. In
addition, to amplify the correlation, some condition equations are imposed to
make the differential of Ed determined which might be key-dependent. Then the
correlation of conditional differential-linear distinguisher on the targeted cipher
E can be treated as the one on a degraded cipher E′

l ◦ Em. Further, the key-
recovery attacks are launched based on the conditional differential-linear distin-
guishers. We apply these cryptanalytic techniques to KNOT-AEAD(128,256,64)
and KNOT-AEAD(128,384,192), of which the former is the primary member rec-
ommended by the designers. As a result, for 15-round KNOT-AEAD(128,256,64)
(out of 52 full rounds) our attack takes 248.8 time complexity and 247.5 blocks to
recover the full 128-bit key. With regard to 17-round KNOT-AEAD(128,384,192)
(out of 76 full rounds), we require time complexity of 259.2 and data complexity
of 258.2 to launch a key-recovery attack.

Comparison of results Next, we compare our attacks with the known analysis
against KNOT-AEAD(128,256,64) and KNOT-AEAD(128,384,192), which are
summarized in Table 1.

Table 1. Summary of attacks on KNOT-AEAD

Cipher Rounds Type of attack Time Data Ref.

†KNOT-AEAD v1
14 distinguisher O(262.2) O(262.2) [31]
12 key-recovery attack O(260) O(260) [31]
15 key-recovery attack 248.8 247.5 Sect. 4.2

†KNOT-AEAD v2
13 distinguisher O(260.8) O(260.8) [31]
12 key-recovery attack O(260) O(260) [31]
17 key-recovery attack 259.2 258.2 Sect. 4.3

† Here we adopt the notations used by designers in [31], i.e.,
KNOT-AEAD(128,256,64) and KNOT-AEAD(128,384,192) denoted by
KNOT-AEAD v1 and KNOT-AEAD v2 respectively.

$ In our attacks, we can recover the full 128-bit secret key for 15-round
KNOT-AEAD v1, and one bit of the secret key for 17-round KNOT-
AEAD v2. In the previous analysis, only one bit of the secret key can
be recovered for 12-round KNOT-AEAD v1 and v2.

In [31], the designers of KNOT give the security analysis of KNOT-AEAD
and KNOT-Hash. Especially, for KNOT-AEAD(128,256,64), they presented a
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14-round distinguishing attack of complexity O(262.2) by considering a trun-
cated difference propagation and a 12-round key-recovery attack of complex-
ity O(260) through a linear approximation involving one key bit. Similarly, for
KNOT-AEAD(128,384,192), they showed a 13-round distinguishing attack of
complexity O(260.8) by considering a truncated difference propagation and a 12-
round key-recovery attack of complexity O(260) through a linear approximation
involving one key bit. In a distinguishing attack, the algorithm (or distinguisher)
allows to distinguish the ciphertext produced by the target cipher from a ran-
dom permutation with high probability, but no information of the secret key
can be obtained. Using the conditional differential-linear attacks, we obtain the
key-recovery attack of 15-round KNOT-AEAD(128,256,64) which is three more
rounds compared with their result. A key-recovery attack for 17-round KNOT-
AEAD(128,384,192) is derived by our cryptanalytic techniques, and it is five
rounds better than their analysis. For the detail of time and data complexities,
please refer to Table 1.

1.2 Paper Organization

This paper is organized as follows. In Section 2, we describe the KONT-AEAD al-
gorithms and review some basic notations and MILP-based automatic search for
differential and linear trails. In Section 3, an overview of the classic differential-
linear attack is showed, followed by some recent developments on it. We present
the details of the conditional differential-linear attacks against KNOT-AEAD
in Section 4. First, we show the procedure of our strategy for searching good
differential-linear distinguishers in Section 4.1. Then we carry out our key-
recovery attacks against 15-round KNOT-AEAD(128,256,64) and 17-round
KNOT(128,384,192) in Section 4.2 and Section 4.3 respectively. Finally in Sec-
tion 5, we give a brief summary of this paper.

2 Preliminaries

In this section we firstly describe the KNOT-AEAD algorithms and their under-
lying permutations. Then we provide an overview of some basic notations and
MILP-based automatic search for differential and linear trails.

2.1 Description of KNOT-AEAD

The KNOT family is designed by Zhang et al., which includes bit-slice lightweight
AEAD and hashing algorithms [30]. In this subsection, we give firstly a brief spec-
ification of KNOT-AEAD on which our differential-linear attacks are applied.

The underlying permutation of each KNOT member iteratively applies an
SPN-based round transformation. There are three round transformations which
are different only in the size b of block, b = 256, 384, 512. Each of the round
transformations consists of three steps: AddRoundConstansb, SubColumnb and
ShiftRowb. Let pb denote a round transformation and pb = ShiftRowb◦SubCol-
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umnb ◦ AddRoundConstansb(S), where S is the b-bit state. As done in [30], a
b-bit state is pictured as a 4 × b

4 rectangular array of bits. The first b
4 bits are

arranged in 0-th row, denoted by a0, the next b
4 bits are arranged in 1-st row,

denoted by a1, and so on. The j-th bit of i-th row is denoted by ai,j or ai[j]. In
the following, a cipher state is described in a two-dimensional way, as illustrated
in Fig. 1.


a0, b

4
−1 · · · a0,1 a0,0

a1, b
4
−1 · · · a1,1 a1,0

a2, b
4
−1 · · · a2,1 a2,0

a3, b
4
−1 · · · a3,1 a3,0


Fig. 1. A cipher state

The AddRoundConstantb transformation It consists of a simple bitwise
XOR of a d-bit round constant generated by the corresponding d-bit LFSR to
the first d bits of the intermediate state, with d = 6, 7, 8. Since we can ignore
this transformation in our attacks, we omit the detailed description of round
constants here.

The SubColumnb transformation It is composed of b
4 parallel applications

of S-boxes to the 4 bits in the same column. The S-box used in KNOT is a 4-bit to
4-bit S-box S: {0, 1}4 → {0, 1}4. The action of this S-box in hexadecimal notation
is given in Table 2. Let x0, x1, x2, x3 and y0, y1, y2, y3 respectively denote the

Table 2. The S-box of KNOT

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 4 0 A 7 B E 1 D 9 F 6 8 5 2 C 3

input and output of the KNOT S-box, where x0 and y0 are the least significant
bits respectively. The algebraic normal form (ANF) of the S-box is the following:

y0 = x0x1 ⊕ x2 ⊕ x0x2 ⊕ x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x2x3

y1 = x1 ⊕ x2 ⊕ x0x3 ⊕ x2x3 ⊕ x1x2x3

y2 = 1⊕ x0 ⊕ x1 ⊕ x2 ⊕ x1x2 ⊕ x3

y3 = x1 ⊕ x0x1 ⊕ x2 ⊕ x3.

The ShiftRowb transformation It makes up of a left rotation to each row
over different offsets. The 0-th row is not rotated, i-th row is left rotated over ci
bit for 1 ≤ i ≤ 3. The parameters (c1, c2, c3) are (1, 8, 25), (1, 8, 55), (1, 16, 25)
for b = 256, 384, 512 respectively.
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There are 4 members in KNOT-AEAD family whose modes are based on Du-
plex mode MonkeyDuplex [9]. Let KNOT-AEAD(k, b, r) denote a KNOT-AEAD
member with k-bit key, b-bit state and r-bit rate. Note that the key length, the
nonce length and the tag length are all equal to k bits for each member. In
the following, we only concentrate on two members KNOT-AEAD(128,256,64)
which is the primary member and KNOT-AEAD(128,384,192). Each member of
KNOT-AEAD has 4 phases: initialization, processing associated data, encryp-
tion and finalization, which is illustrated in Fig. 2. The authenticated encryp-

K and N
load

p[nr0]
c

⊕r

A0

p[nr]

⊕

Au−1

c

p[nr]

⊕

1∥0c−1

c

⊕r

P0 C0

p[nr]
c

⊕

Pv−2 Cv−2

p[nr]

⊕

Pv−1Cv−1

r

c

p[nrf ]
T

k

Initialization Processing Associated Data Encryption Finalization

Fig. 2. The encryption of KNOT-AEAD

tion process is initialized by loading the key K and the nonce N , S = K||N
for KNOT-AEAD(128,256,64) and S = (0128||K||N) ⊕ (1||0383) for KNOT-
AEAD(128,384,192). Then the initial state is processed by p[nr0], i.e., nr0 rounds
of the round transformation, where nr0 = 52 for KNOT-AEAD(128,256,64)
and nr0 = 76 for KNOT-AEAD(128,384,192). The associated data block Ai

is XORed and then p[nr] is applied to the intermediate state in sequence for
i = 0, · · · , u − 1. The constant 1||0c−1 is XORed to the capacity part of state
after the last p[nr] in the process of associated data. Each plaintext block Pi is
processed similarly to Ai for i = 0, · · · , v−1, while the corresponding ciphertext
block Ci is the output. In the finalization, p[nrf ] is applied and the tag T is the
output. The data, i.e., the blocks of processed plaintext and associated data, is
limited to 264 for both member by the designers of KNOT.

2.2 Notations

In this subsection, some basic notations are presented, followed by a fundamental
lemma — Piling-up Lemma.

Let F2 = {0, 1} be the finite field with two elements. The correlation of a
binary random variable x is defined as Cor(x) = Pr[x = 0] − Pr[x = 1] =
2Pr[x = 0]−1. Similarly, the correlation of a Boolean function on an input with
some distribution can be defined as following.

Definition 1. The correlation of a Boolean function f : Fn
2 → F2 is defined as

Cor(f) = Pr[f(X) = 0] − Pr[f(X) = 1], where X = (x0, · · · , xn−1) is a vector
of binary random variables.
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Note that the probability that f(X) equals zero can be expressed as

Pr[f(X) = 0] =
∑

(a0,··· ,an−1)∈{X|f(X)=0}

Pr[X = (a0, · · · , an−1)].

If x0, · · · , xn−1 are independent with probability D = {Pr[xi = 0] = (1 +
ci)/2|xi ∈ X, 0 ≤ i ≤ n− 1}, then

Pr[f(X) = 0] =
∑

(a0,··· ,an−1)∈{X|f(X)=0}

n−1∏
i=0

1 + (−1)aici
2

,

where ci is correlation of the binary variable xi. Furthermore, if x0, · · · , xn−1 are
independently uniform distributed, then we can get Cor(f) = 2−n(#{X ∈ Fn

2 :
f(X) = 0} −#{X ∈ Fn

2 : f(X) = 1}), which is consistent with the definition in
[14].

Lemma 1 (Piling-up Lemma [25]). Let x0, · · · , xn−1 be n independent bi-
nary random variables with probability Pr[xi = 0] = pi. Then the following holds

Pr[x0 ⊕ · · · ⊕ xn−1 = 0] =
1

2
+ 2n−1

n−1∏
i=0

(pi −
1

2
),

or alternatively, Cor(x0 ⊕ · · · ⊕ xn−1) =
∏n−1

i=0 Cor(xi).

2.3 MILP-Based Automatic Search for Differential and Linear Trails

In this subsection, we give a brief description about the Mixed Integer Linear
Programming (MILP)-based automatic search method for differential and linear
trails and how we apply it to the KNOT permutations. For more details of this
method, please refer to [29, 28].

In [26], Mouha et al. introduced the MILP model to count the number of
active S-boxes for those word-oriented block ciphers. In ASIACRYPT 2014, Sun
et al. [29] extended the framework to bit-oriented ciphers. Let xi denote the
difference variable for the i-th bit. That is, xi = 1 if the difference at the i-th
bit is active; otherwise, xi = 0.

Suppose the two vectors (x0, x1, · · · , xω−1) and (y0, y1, · · · , yν−1) are the
input and output bit differences of an ω × ν S-box St. Let the bit variable At

denote the activity of this S-box. That is to say, At = 1 if St is active, and
At = 0 otherwise. The following constraints can be used to ensure that non-zero
input difference of the S-box must active it:{

At − xk ≥ 0, k = 0, . . . , ω − 1,

−At +
∑ω−1

j=0 xj ≥ 0.
(1)

Let a discrete point (x0, · · · , xω−1, y0, · · · , yν−1) ∈ Rω+ν denote the input-
output differential pattern of an S-box, and then we can get a finite set of
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discrete points Q, which includes all possible differential patterns of the S-box.
By computing the H-Representation of the convex hull of Q, many linear in-
equalities are obtained, each of which can be used to remove some impossible
differential patterns of the S-box. In [28], they presented the greedy algorithm to
select a subset of the H-Representation of the convex hull with less inequalities,
which can be used to exactly describe the differential patterns of the S-box.

The objective function can be to minimize the sum of all variables
∑

t At,
which indicates the number of the active S-boxes appearing in the schematic
description of the encryption. Using any MILP optimizer such as Gurobi, the
model can be solved and good differential characteristics are returned.

For the S-box of the KNOT permutations, since there are 3 possible probabil-
ities, i.e., 1, 2−2, 2−3, we append two extra bits (p, q) to encode the probability of
the propagation. Therefore, a vector (x0, · · · , x3, y0, · · · , y3, p, q) ∈ R10 can de-
scribe a differential pattern with probability for the S-box. Then with the help of
SageMath, 543 inequalities are derived through computing the H-Representation
of the convex hull and the number of inequalities is reduced to 23 by the greedy
algorithm in [28]. Since the linear layer of KNOT makes up of the left rotation,
there is no need to introduce new inequalities. Besides, we can ignore the bitwise
XOR of constants in the differential trail.

The objective function is minimization of the formula
∑

t(pt + 2qt), which
means the total probability of the differential trail through the encryption algo-
rithm.

With regard to searching for linear trails, the modeling process is similiar
with the aforementioned.

3 The Framework of Differential-Linear Attacks

We begin with an overview of the classical differential-linear attack, and then
we recall some recent developments on it.

3.1 The Classic Differential-Linear Attack

Let E be an entire cipher that can be decomposed into two subciphers Ed and
El such that E = El ◦ Ed where the differential and linear cryptanalyses are
applied into Ed and El respectively. More precisely, assume that a differential
∆in

p→ ∆m for Ed holds with probability Pr[Ed(X)⊕Ed(X ⊕∆in) = ∆m] = p,
and a linear approximation Γm

q→ Γout for El holds with probability Pr[Γm ·X =
Γout · El(X)] = 1

2 (1 + q) (or with correlation q), where · denotes the inner
product between two vectors. The differential-linear attack combines the above
two distinguishers and the procedure of new distinguisher is presented in the
following.

Procedure of the differential-linear distinguisher To distinguish E from
a random permutation R, the adversary samples N plaintext pairs (P, P ′) such
that P⊕P ′ = ∆in and checks whether the corresponding ciphertext pairs (C,C ′)
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agree on the parity of output subset of bits in Γout one by one. The detailed
procedure is presented as Algorithm 1. In the case that the differential in Ed

Algorithm 1 Procedure of the differential-linear distinguisher
Ensure: The cipher E or random permutation R.
1: Set a counter T to 0.
2: for N plaintext pairs (P, P ⊕∆in) do
3: Increment T if Γout · (O(P )⊕O(P ⊕∆in)) = 0, where O is a encryption oracle

E or R.
4: end for
5: if 2T

N
− 1 deviates enough from 0 then

6: The data is draw from the cipher E.
7: else
8: A random permutation R.
9: end if

fails, the equality Γout · E(X) = Γout · E(X ⊕ ∆in) is usually assumed to hold
in approximately half. Under the assumption that Ed and El are independent,
the probability of differential-linear distinguisher can be natively estimated using
Piling-up Lemma, Pr[Γout ·E(X) = Γout ·E(X⊕∆in)] = p( 12 (1+q2))+(1−p) 12 =
1
2 (1+pq2) (assuming that Γm ·∆m = 0). Therefore, by preparing N = O(p−2q−4)
chosen plaintext pairs (P, P ⊕ ∆in), one can distinguish the cipher E from a
random permutation using Algorithm 1 (refer to [13, 27] for the details about
the data complexity and success probability).

In Theorem 2 of [27], Selçuk showed the analytical results of the success
probability of a key-recovery attack in linear cryptanalysis. The main difference
between the linear context and the differential-linear context is that the sign
of the bias in the latter case is unaffected by any key bit (as all the affected
key bits are used twice and thus canceled). In [13], Blondeau et al. adapted the
framework of [27] and gave the success probability of a key-recovery attack in
the differential-linear context as

PS = Φ(2
√
N |pdl −

1

2
| − Φ−1(1− 2−a)), (2)

where Φ is the cumulative distribution function of the standard normal distribu-
tion, pdl is the probability of differential-linear distinguisher, N is the number
of chosen plaintext pairs and a is the advantage of the attack as defined in [27].

Exact analysis for the correlation of differential-linear distinguisher
In [13], Blondeau et al. showed an exact expression of the correlation by differential-
linear hull. With the following notations, the result is presented as Theorem 1.

E∆in,Γout = 2Pr[Γout · (E(X)⊕ E(X ⊕∆in)) = 0]− 1
ε∆in,Γm

= 2Pr[Γm · (Ed(X)⊕ Ed(X ⊕∆in)) = 0]− 1
cΓm,Γout

= 2Pr[Γm ·X = Γout · El(X)]− 1

9



Theorem 1 (Differential-Linear Hull [13]). Assume that the part Ed and
El of the block cipher E = El ◦ Ed are independent. Using the notation defined
in the above, for all ∆in ∈ {0, 1}n \ 0n and Γout ∈ {0, 1}n \ 0n, we have

E∆in,Γout
=

∑
Γm∈{0,1}n

ε∆in,Γm
c2Γm,Γout

. (3)

In Eq. (3) all the linear approximation trails are taken into account when esti-
mating the correlation of the differential-linear approximation. Of course, it is
usually hard to evaluate the correlation by the above expression. In practice, one
mostly has to make the assumption of one strong linear approximation in El or
supporting subset in the intermediate layer, and verify the results experimentally.

3.2 Recent improvements
In practice, the assumption of independence between Ed and El might arise a
problem that results in wrong estimation for the correlation. Currently, the only
way to get some evidence of this independence assumption is to experimentally
compute the correlation of differential-linear approximation over a reduced num-
ber of rounds of the cipher. As done in recent works [3, 6, 20, 23], the subcipher
El is further divided to two parts E′

l and Em to obtain a more accurate esti-
mation for the correlation of differential-linear distinguisher. That is the cipher
is divided as E = E′

l ◦ Em ◦ Ed and the overall attack framework is depicted in
Fig. 3. In [3], Bar-On et al. introduced a theoretical method called Differential-

P ∆in P ′

Ed Edp

X ∆m X ′

Em Emr

Y Y ′Γ′
m Γ′

m

E′
l E′

l
q q

C C ′Γout Γout

Fig. 3. The structure of differential-linear distinguisher

Linear Connectivity Table (DLCT) to cover the middle part Em. Moreover, they
showed that the DLCT could be efficiently constructed using the Fast Fourier
Transform. With the DLCT, they further improved the differential-linear attacks
on ICEPOLE and 8-round DES.

10



Subsequently, Beierle et al. [6] presented several improvements of the differential-
linear attacks against ARX ciphers and successfully applied them to Chaskey
and ChaCha. In their work, the correlation of middle part Em is experimentally
evaluated. Let r denote the correlation of the middle part Em of the cipher,
i.e., r = Cor[Γ ′

m · (Em(X)⊕Em(X ⊕∆m))]. Similarly, under the assumption of
independence between the subciphers, the probability of differential-linear distin-
guisher can be simply estimated using Piling-up Lemma, Pr[Γout ·E(X) = Γout ·
E(X ⊕∆in)] =

1
2 (1 + prq2), and one can distinguish the cipher E from random

permutation using N = O(p−2r−2q−4) chosen plaintext pairs (P, P ⊕∆in) using
Algorithm 1. We pay attention to the part Ed where a differential ∆in

p→ ∆m

holds with probability Pr[Ed(X) ⊕ Ed(X ⊕ ∆in) = ∆m] = p. Let Xd denote
the set of all input values that define the right pairs for the differential, i.e.,
Xd = {X ∈ {0, 1}n|Ed(X)⊕Ed(X ⊕∆in) = ∆m}. To amplify the correlation of
differential-linear distinguisher, Beierle et al. [6] exploited the special structure
of Ed called fully or probabilistic independent parts which could be rather likely
observed in many ARX ciphers, such as ChaCha and Chaskey. With the help
of fully or probabilistic independent parts, given one element X ∈ Xd, one can
generate many other elements in Xd for free or with some probability (almost
1), independently of the secret key. However, we can not use this method for a
general permutation Ed due to that an arbitrary permutation might not have
this special structure.

4 Differential-Linear Cryptanalysis of KNOT-AEAD

In this section, we present the details of the conditional differential-linear attacks
against KNOT-AEAD. The KNOT’s design document [30] shows, if the length
of the associated data is zero, then no padding is applied and no associated data
is processed. In our attacks, we omit the processing associated data phase, and
our attack target is the initialization of KNOT-AEAD where nr′0 rounds of the
round transformation are applied to the initial state. In the following, we denote
the targeted procedure by nr′0-round KNOT-AEAD(k, b, r) which is shown in
Fig. 4. Our attacks are performed in known plaintext attack scenario, i.e., P0

K and N
load

p[nr′0]

r ⊕

P0 C0

Initialization Encryption

Fig. 4. The targeted procedure of KNOT-AEAD
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and C0 can be accessed. Only single-key model is taken into account in which
the input difference is restricted on the nonce N which can be controlled by the
adversary, and the output linear mask is restricted on the first 64 or 192 bits of
a state, i.e., the rate part of a state.

4.1 Searching Differential-Linear Distinguishers

The diffusion layers of KNOT permutations are very simple and only make up
of a left rotation to each row. For example, for 8-round Em (from 3-rd to 10-th
round), when the single-bit input difference is at 0-th bit of 2-nd row, the output
difference at 55-th bit of 2-nd row is determined to be 1. To make the analysis
cover as many rounds as possible and observe higher correlation, we only consider
single-bit input difference and output linear mask of Em. For obtaining a good
differential-linear distinguisher, the procedure of our strategy is presented in the
following:

STEP 1 Search the best difference trail given an arbitrary single-bit output dif-
ference on Ed by using the MILP-aided (differential trail) searching method.
The best difference is denoted by ∆in → ∆m with the weight restriction
wt(∆m) = 1.

STEP 2 For all the single-bit input difference ∆m, exhaustively search the best
output linear mask whose weight is restricted to 1 on Em by experiment-
based correlation estimation method. The best differential-linear characteris-
tic is denoted by ∆m → Γ ′

m with the weight restriction wt(∆m) = wt(Γ ′
m) =

1.
STEP 3 Final, for all the single-bit input linear mask, exhaustively search the

best linear trail on E′
l by using MILP-aided (linear trail) searching method.

The best difference is denoted by Γ ′
m → Γout with the weight restriction

wt(Γ ′
m) = 1.

Then many differential-linear distinguishers are generated by combining results
in the above three steps and the best one is chosen to launch our attacks.

4.2 Attack on 15-round KNOT-AEAD(128,256,64)

In this subsection, we firstly show how to find the differential-linear distinguisher
of 15-round KNOT-AEAD(128,256,64). Then a key-recovery attack is presented
based on this distinguisher.

Differential-Linear Distinguisher Since the (differential-linear) character-
istics of KNOT are rotation-invariant within a 64-bit word, all the single-bit
differences (or linear masks) can be classified into four cases. For each case, we
search the best result separately.

We searched all the differential trails of Ed up to 8 round in which the weight
of output difference is restricted 1. But, there are three possible effective differ-
ential trails which can be used in our attacks, two 1-round trails with probability
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2−3 and output difference at words of 0/2-th row, one 2-round trail with prob-
ability 2−6 and output difference at word of 2-nd row, for details please refer to
Appendix A.1. To increase the number of rounds attacked as much as possible,
we choose the 2-round trail in the following analysis, which is shown in Table
3. In the presentation of trails, the row ordering is from right to left, then from
top-down, i.e., 0, 1, 2 and 3-th row respectively.

Table 3. A 2-round differential trail with probability 2−6

Round Difference

Input 0x0100000000000000 0x0100000000000000
0x0000000000000000 0x0000000000000000

1st round 0x0000000000000000 0x0100000000000000
0x0000000000000000 0x0000000000000000

2nd round 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000001

To amplify the correlation, some condition equations are imposed to make
the differential of Ed determined. Similar techniques are appeared in conditional
differential cryptanalysis [7, 21]. Then the correlation of conditional differential-
linear distinguisher on the targeted cipher E = E′

l ◦ Em ◦ Ed can be treated
as the one on a degraded cipher E′

l ◦ Em. With the symbolic computation in
SageMath, the following 6 condition equations are imposed to make the dif-
ferential trail in Table 3 determined, i.e., 3 bits of 1-st round ∆a

(1)
0 [56] =

n0[56]k1[56] ⊕ n0[56] ⊕ n1[56]k1[56] ⊕ n1[56] ⊕ k0[56] ⊕ 1 = 1, ∆a
(1)
1 [57] =

k0[56]k1[56] ⊕ k1[56] ⊕ 1 = 0, ∆a
(1)
3 [17] = n0[56] ⊕ n1[56] = 0, and 3 bits of

2-nd round ∆a
(2)
0 [56] = a

(1)
1 [56]a

(1)
3 [56] ⊕ a

(1)
1 [56] ⊕ a

(1)
2 [56] = 0, ∆a

(2)
1 [57] =

a
(1)
3 [56] = 0, ∆a

(2)
3 [17] = a

(1)
1 [56] = 0, where a

(r)
i [j] (∆a

(r)
i [j]) denotes the (dif-

ference) expression of the j-th bit of i-th 64-bit word of r-th round, ki[j] and
ni[j] are the j-th bit of i-th 64-bit word of the secret K and nonce N respec-
tively. Generally, we impose the 6 condition equations to make the correspond-
ing differential trails determined, i.e., ∆a

(1)
0 [i] = 1, ∆a

(1)
1 [(i + 1) mod 64] = 0,

∆a
(1)
3 [(i + 25) mod 64] = 0, and ∆a

(2)
0 [i] = 0, ∆a

(2)
1 [(i + 1) mod 64] = 0,

∆a
(2)
3 [(i + 25) mod 64] = 0, for 0 ≤ i ≤ 63, which are simplified as the be-

low:

k0[i] = 0,
k1[i] = 1,

n0[i]⊕ n1[i] = 0,
n0[i− 1]k1[i− 1]⊕ (n1[i− 1]⊕ 1)k0[i− 1]k1[i− 1]⊕ n1[i− 1]⊕ k0[i− 1] = 0,

n0[i− 8] = (n1[i− 8]⊕ 1)k0[i− 8]⊕ n1[i− 8]⊕ k1[i− 8]⊕ 1,
(n0[i− 25]⊕ 1)n1[i− 25] = k0[i− 25]⊕ k1[i− 25]

(4)
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where indices should be modulo 64 which denote the order of bits in a word.
In the following, we will set the above condition equations to be satisfied and
perform sampling experiments of correlation estimation of Em.

For the subcipher E′
l , we searched all the linear trails up to 5 round in

which the weight of input linear mask is restricted 1. But there is only one
possible effective linear trail which can be used in our attacks, a 1-round trail
with correlation 2−2 and input linear mask at word of 2-nd row, which is shown
in Table 4.

Table 4. A 1-round linear trail with correlation 2−2

Round Linear mask

Input 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000001

1st round 0x0000000000000000 0x0000000000000001
0x0000000000000000 0x0000000000000000

Targeting the result of 15-round KNOT-AEAD(128,256,64), we exhaustively
searched all the 64 single-bit output linear masks at word of 2-nd row for Em

of 12 rounds under the condition that the above difference equations in Eq.
(4) are satisfied. We use at most 235 random nonces for each of the 24 random
keys, so we can only measure a correlation of about |Cor| > c · 2−17.5 = 2−14

(where c ≈
√
128 for a reasonable estimation error). For the input difference

showed in Table 3 (i.e., i = 56), the best output linear mask is at 27-th bit
of 2-nd row with correlation −2−11.9. Furthermore, once one or more condition
equations of Eq. (4) are not satisfied, we can not detect any correlation. As
a result, we obtain a differential-linear distinguisher of correlation −2−15.9 for
15-round KNOT(128,256,64) by splicing the above 1-round linear trail.

Key-Recovery Attack As defined in [21], conditions that control the differ-
ence propagations can be classified into three types in a chosen plaintext/initial
value (IV) attack scenario, Type 0 conditions only involving bits of IV, Type 1
conditions only involving bits of IV and the secret key, Type 2 conditions only
involving bits of the secret key. Note that the adversary can impose the condi-
tion equations of Type 0 for free in a chosen plaintext/IV attack scenario. Since
condition equations might be key-dependent (only considering Type 1), we need
guess the values of expressions that consist of bits of the secret key and choose
the value of corresponding IV bits according to the condition equations. For the
case of Type 2, the differential-linear cryptanalysis might degrade into a weak
key-recovery attack. Assume that there are l = l1 + l2 independent expressions
of key bits, l1 conditions of Type 1 and l2 conditions of Type 2. The general
procedure of the conditional differential-linear attack is summarized as follows.
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Procedure of the conditional differential-linear attack For each guess of
expressions of key bits in Type 1, like in Algorithm 1, the adversary samples N
pairs of initial state (X,X ′) such that X⊕X ′ = ∆in and counts how many times
the corresponding ciphertext pairs agree on the parity of output subset of bits
in Γout. To make the differential propagation in Ed determined, some bits of IV
called conditional IV bits are set according to the guessed values of expressions of
key bits and the condition equations (containing Type 0). Besides, the sampled
pairs of initial state should be generated by flipping non-conditional IV bits. In
order to obtain an effective distinguisher, there must be enough non-conditional
IV bits to generate initial states to observe the correlation of differential-linear
distinguisher. In Algorithm 2, the details of this procedure are presented and
the complexity of Algorithm 2 is 2l1+1N . Note that we ignore the conditions of
Type 2 in Algorithm 2, additional 2l2 executions of Algorithm 2 are needed if
there are enough other differential-linear distinguishers.

Algorithm 2 Procedure of the conditional differential-linear attack
Ensure: Set of candidates for some expressions of key bits of the cipher E.
1: for All 2l1 possible values of expressions of key bits imposed in Ed do
2: Set the conditional IV bits according to the condition equations.
3: Prepare N pairs of initial states (X,X ⊕ ∆in) by varying non-conditional IV

bits.
4: Set a counter T to 0.
5: for N initial states (X,X ⊕∆in) do
6: Increment T if Γout · (E(X)⊕ E(X ⊕∆in)) = 0.
7: end for
8: if 2T

N
− 1 deviates enough from 0 then

9: Keep the current value of expressions of key bits in CK as a candidate.
10: end if
11: end for
12: Reduce the system of expressions of key bits in CK and return the solutions.

For 15-round KNOT-AEAD(128,256,64), we launch the key-recovery attack
by Algorithm 2. Among Eq. (4), 1 of 6 belongs to Type 0 conditions, 3 of 6
belong to Type 1 conditions and 2 of 6 belong to Type 2 conditions. First, we
impose the Type 0 condition n0[i]⊕n1[i] = 0 for free. And the value of n0[i−25]
is set to zero (or n1[i−25] = 1) to prevent the corresponding condition equation
to degrade into a Type 2 condition. In Algorithm 2, the conditional IV bits are
chosen as CIV = {n0[i], n0[i− 25]} ∪ {n1[i− 1], n0[i− 8], n1[i− 25]} and l1 = 3.
Once the values of the flipped bits FIV = {n0[i − 1] = 0, n1[i − 8]} are given,
we can distinguish k0[i] = 0, k1[i] = 1 from the other cases using Algorithm
2 with the time and data complexities 2l1+1N = 23+1+37.3 = 241.3 and the
success probability is almost 1 according to the formula in [13], Eq. (2). On
average, we will succeed by repeatedly executing Algorithm 2 for 2l2 = 4 times
with the index i varying which identifies the differential-linear distinguisher. In
the case k0[i] = 0, k1[i] = 1, three or four extra expressions of key bits can be
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recovered, i.e., k0[i−1] = k1[i−1] = 1 or k0[i−1] = c1 (when k0[i−1]k1[i−1] =
0), (v ⊕ 1)k0[i − 8] ⊕ v ⊕ k1[i − 8] ⊕ 1 = c2, k0[i − 25] ⊕ k1[i − 25] = c3, where
n0[i−1] = 0 and v is the value of n1[i−8]. Note that when k0[i−1] = k1[i−1] = 1,
the corresponding condition equation holds no matter what the value of n1[i−1]
is. With the additional complexity of 21+1+37.3 = 239.3, one or two equations of
key bits can be derived by flipping the value of FIV bit by bit, i.e., k1[i− 1]⊕
k0[i−1] = c′1 (when k0[i−1]k1[i−1] = 0), (v⊕1)k0[i−8]⊕v⊕k1[i−8]⊕1 = c′2.
Therefore, we can totally obtain 7 independently linear equations of key bits in
the case k0[i] = 0, k1[i] = 1.

For i (0 ≤ i ≤ 63), we can perform the above process 64 times and obtain
some equations of key bits. On average, there are 16 indices i’s such that k0[i] =
0, k1[i] = 1, and 16 × 7 = 112 equations of key bits can be derived in total.
We have checked that the above linear system has on average 80 independently
linear equations by thousands of experiments. In conclusion, we can recover
the 128-bit secret key for 15-round KNOT(128,256,64) with the expected time
complexity (64 × 241.3 + 16 × 2 × 239.3) + 248 = 248.8 and data complexity of
64× 241.3 + 16× 2× 239.3 = 247.5.

4.3 Attack on 17-round KNOT-AEAD(128,384,192)

Similar to the attack of the primary AEAD member, we present the key-recovery
attack against KNOT-AEAD(128,384,192) in the following.

Differential-Linear Distinguisher We searched all the differential trails with
single-bit output difference for Ed up to 9 round. But there are only two possible
effective differential trails, two 1-round trails with probability 2−3 and output
difference at words of 0/2-th row respectively, for details please refer to Appendix
A.2. Note that the constants of initial state are treated as variables in our MILP-
aided differential trail searching method. In the following attack, we choose the
1-round differential trail which is shown in Table 5.

Table 5. A 1-round differential trail with probability 2−3

Round Difference

Input 0x000000000000000000000000 0x010000000000000000000000
0x000000000000000000000000 0x000000000000000000000000

1st round 0x000000000000000000000000 0x000000000000000000000000
0x000000000000000000000000 0x000000000000000000000001

Taking the constants of initial state into account, we recompute the prop-
agation of the above 1-round differential trail by SageMath. When the input
difference is at i-th bit of 0-row (0 ≤ i ≤ 94), a single-bit output difference at
((i+8) mod 96)-th bit of 2-nd row can be observed with probability 2−1 or 2−2.
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The difference propagation will be certain when the below condition equations
of difference are satisfied.

ni+96 = 0, ki+64 = 0, 0 ≤ i ≤ 31,
ki−32 = 0, ki+96 = 0, 32 ≤ i ≤ 63,
ki−32 = 0, 64 ≤ i ≤ 94.

(5)

For the subcipher Em of 13 rounds, all the single-bit output linear masks are
exhaustively searched when the input difference is at 0-th bit of 2-nd row. As a
result, we detected high correlation at 14-th bit of 0-th row with 2−12.6.

For the subcipher E′
l , we searched all the linear trails up to 7 round in which

the weight of input linear mask is restricted 1. Consequently, some rounds can
be expanded forward when the single-bit input linear mask is at 0-th row or
2-nd row. From them, we choose three effective linear trails which can be used
in our attacks, trails for 1/2/3 round(s) with correlation 2−2/2−5/2−7 respec-
tively and input linear masks at words of 0-th row for them, for details please
refer to Appendix B. By splicing the 3-round linear trail which is shown in
Table 6, we obtain a differential-linear trail of correlation 2−26.6 for 17-round
KNOT(128,384,192).

Table 6. A 3-round linear trail with correlation 2−7

Round Linear mask

Input 0x000000000000000000000000 0x000000000000000000000001
0x000000000000000000000000 0x000000000000000000000000

1st round 0x000000000000000000000000 0x000000000000000000000001
0x000000000000000000000000 0x000000000000000000000100

2nd round 0x000000000000000000000000 0x000000000000000000000101
0x000000000000000000000000 0x000000000000000000000100

3rd round 0x000000000000000000000202 0x000000000000000000000100
0x000000000000000000000000 0x000000000000000000000000

Key-Recovery Attack In the case ki−32 = 0 (64 ≤ i ≤ 94), the high corre-
lation can be observed with time and data complexities of 21+57.2 = 258.2 with
success probability of almost 1 by Algorithm 2 where no key expression needs
to be guessed. We will succeed on average by repeatedly running Algorithm 2
for 2 times with different indices. In conclusion, with the time complexity of
21+58.2 = 259.2 and data complexity of 258.2, we can on average distinguish 17-
round KNOT(128,384,192) from random permutation and recover one bit of the
secret key. Similar analysis can be obtained for any i ∈ [0, · · · , 63].

5 Conclusion
In this paper, by some techniques of differential-linear cryptanalysis, we focus
on the security for the initialization phase of two members of the KNOT-AEAD
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family. Based on an observation that the diffusion layers of KNOT permuta-
tions are very simple, our strategy is to restrict the input difference and out-
put linear mask of Em to be single-bit such that we can obtain a differential-
linear distinguisher which covers as many rounds as possible and has higher
correlation. In addition, to amplify the correlation, some condition equations
are imposed to make the differential of Ed determined which might be key-
dependent. Then we can carry the key-recovery attacks based on the condi-
tional differential-linear distinguishers. We apply these cryptanalytic techniques
to KNOT-AEAD(128,256,64) and KNOT-AEAD(128,384,192). As a result, our
attacks significantly improve the previous analysis results on them.

A Appendix A

In Appendix A, we present only the differential trails which can be effectively
used in our differential-linear attacks.

A.1 KNOT-AEAD(128,256,64)

The other two 1-round differential trails of KNOT-AEAD(128,256,64) is showed
in the following.

Table 7. A 1-round differential trail with probability 2−3

Round Difference

Input 0x0000000000000001 0x0000000000000001
0x0000000000000000 0x0000000000000000

1st round 0x0000000000000000 0x0000000000000001
0x0000000000000000 0x0000000000000000

Table 8. A 1-round differential trail with probability 2−3

Round Difference

Input 0x0000000000000000 0x0100000000000000
0x0000000000000000 0x0000000000000000

1st round 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000001

A.2 KNOT-AEAD(128,384,192)

The other one 1-round differential trail of KNOT-AEAD(128,384,192) is showed
in the following.
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Table 9. A 1-round differential trail with probability 2−3

Round Difference

Input 0x000000000000000000000001 0x000000000000000000000001
0x000000000000000000000000 0x000000000000000000000000

1st round 0x000000000000000000000000 0x000000000000000000000001
0x000000000000000000000000 0x000000000000000000000000

B Appendix B

In Appendix B, we present the other two linear trails of KNOT(128,384,192)
which can be effectively used in our differential-linear attacks.

Table 10. A 1-round linear trail with correlation 2−2

Round Linear mask

Input 0x000000000000000000000000 0x000000000000000000000001
0x000000000000000000000000 0x000000000000000000000000

1st round 0x000000000000000000000002 0x000000000000000000000001
0x000000000000000000000000 0x000000000000000000000000

Table 11. A 2-round linear trail with correlation 2−5

Round Linear mask

Input 0x000000000000000000000000 0x000000000000000000000001
0x000000000000000000000000 0x000000000000000000000000

1st round 0x000000000000000000000000 0x000000000000000000000001
0x000000000000000000000000 0x000000000000000000000100

2nd round 0x000000000000000000000002 0x000000000000000000000101
0x000000000000000000000000 0x000000000000000000000000
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