
Revisit Two Memoryless State-Recovery
Cryptanalysis Methods on A5/1

Mingxing Wang1,2 and Yonglin Hao1?

1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
2 The 6th Research Institute of China Electronics Corporation, Beijing 100083, China

Abstract. At ASIACRYPT 2019, Zhang proposes a near collision at-
tack on A5/1. He claims that such an attack method can recover the
64-bit A5/1 state with a time complexity around 232 cipher ticks and re-
quires negligible memory complexities. Soon after its proposal, Zhang’s
near collision attack is severely challenged by Derbez et al. who claim
that Zhang’s attack cannot have a time complexity lower than Golic’s
memoryless guess-and-determine attack dating back to EUROCRYPT
1997. In this paper, we study both the guess-and-determine and the
near collision attacks for recovering A5/1 states with negligible mem-
ory complexities. In order to make a fair comparison, we recover the
state s0 using both methods. We propose a new guessing technique that
can construct linear equation filters in a more efficient manner. When
evaluating time complexities, we take the filtering strength of the linear
equation systems into account making the complexities more convincing.
According to our detailed analysis, the new guess-and-determine attack
can recover the state s0 with a time complexity of 243.91 simple opera-
tions. The time complexity for the near collision attack is 250.57 simple
operations.

Keywords: stream ciphers, A5/1, guess-and-determine, near collision
attack

1 Introduction

A5/1 is a typical LFSR-based stream cipher with an irregular clocking mecha-
nism designed in 1980’s for the GSM standard. Ever since its proposal, A5/1 has
been attacked with various cryptanalytic methods such as time/memory/data
tradeoff attacks, guess-and-determine attacks, near collision attack (NCA) etc.
[1,2,3,4,5,6,7,8] Most of the practical attacks on A5/1 requires large precomputed
rainbow table which significantly increases the memory complexities [9,10,11].
Since the implementation of high-memory-requirement attacks are usually quite
expensive, the attacks with negligible memory complexities, which we refer in
this paper as the “memoryless” attacks, are usually preferable.

The 1st memoryless state-recovery attack on A5/1 is proposed by Golic [1] at
EUROCRYPT 1997. The basic guess-and-determine attack in [1] requires 243.15

? Corresponding author email: haoyonglin@yeah.net

2 Mingxing Wang and Yonglin Hao

steps, where each step in this attack is much more complicated, since it is based
on the solution of a linear system as pointed out in [9]. The latest memoryless
result on A5/1 is proposed at Asiacrypt 2019 where Zhang [8] claims that, by
utilizing some near collision properties, the complexity of A5/1 state recovery can
be lowered to only around 232 cipher ticks with a negligible memory requirement.
Soon after its proposal, Zhang’s result is challenged severely: Derbez et al. point
out in [12] that since the attack in [8] is not fully implemented, according to their
practical verification, the non-randomness claimed by Zhang in [8] do not even
exist. Therefore, Derbez et al. draw the conclusion that Zhang’s near collision
attack in [8] cannot have a complexity lower than that of Golic’s basic guess-
and-determine attack in [1]. However, Derbez et al. has not fully implemented
the Zhang’s near collision attack either making it unknown whether the near
collision method can still be regarded as an effective cryptanalysis tool for A5/1
state recovery.

It is also noticeable that both Golic’s attack and Zhang’s attack use a system
of linear equations as a filter for wrong guesses. But neither Golic nor Zhang has
ever evaluated the strength of such a filter in practice. Therefore, the complexities
of both the guess-and-determine and near collision attacks should be reevaluated
in a more detailed manner.
Our Contributions. In this paper, we revisit the memoryless attacks on A5/1
using both the guess-and-determine and the near collision methods. We first
propose a new guessing technique: instead of guessing the clock bits directly, we
guess the encoded move patterns so the linear systems can be constructed more
efficiently. With this method, we are able to acquire a new guess-and-determine
attack that can recover the initial state with a time complexity of 243.91 simple
operations. Then, we analyze the near collision attack given by Zhang in [8] only
to find that the complexities in [8] are somewhat optimistic. We point out the
mistakes made in [8] and give corrections. According to our detailed analysis, the
near collision attack has a time complexity 250.57 simple operations. The C++
source codes for computing the statistics in this paper are available online 3.

This paper is organized as follows. Sect. 2 provides brief introduction to the
A5/1 stream cipher and general process of the two memoryless state-recovery
attacks. Sect. 3 introduces a new guessing technique: the move pattern guess-
ing technique. Sect. 4 introduces our move-guessing based guess-and-determine
attack on A5/1. Sect. 5 revisits Zhang’s near collision attack: we point out the
mistakes made in [8] and provide new collision attacks with correct complexities.
Sect. 6 conclude the paper and point out some future works.

2 Preliminary

In Sect. 2.1, we give a brief introduction to the keystream generation phase of the
A5/1 stream cipher. In Sect. 2.2, we briefly review the main idea of Golic’s guess-
and-determine attack [1]. In Sect. 2.3, we give the general process of Zhang’s near
collision attack [8].

3 https://github.com/peterhao89/A51Attacks

https://github.com/peterhao89/A51Attacks

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 3

2.1 The Keystream Generation Procedure of A5/1

A5/1 has a 64-bit internal state consisting of 3 registers of sizes 19, 22, 23
respectively. We denote the 64-bit state at time t (t = 0, 1, 2, . . .) as

st =(R1t,R2t,R3t)

=(st[0, . . . , 18], st[19, . . . , 40], st[41, . . . , 63])

=(R1t[0, . . . , 18],R2t[0, . . . , 21],R3t[0, . . . , 22])

(1)

Before generating the output bit zt, A5/1 round function will update the internal
state st → st+1 in a stop-and-go manner as follows:

1. Compute majt as

majt =(R1t[8] ·R2t[10])⊕ (R1t[8] ·R3t[10])⊕ (R2t[10] ·R3t[10])

=(st[8] · st[29])⊕ (st[8] · st[51])⊕ (st[29] · st[51])
(2)

2. If R1t[8] = st[8] 6= majt, R1t+1 ← R1t, otherwise, call updateR1 as follows:

R1t+1[i]←

{
R1t[i− 1] i ∈ [1, 18]

R1t[18]⊕R1t[17]⊕R1t[16]⊕R1t[13]
(3)

3. If R2t[10] = st[29] 6= majt, R2t+1 ← R2t, otherwise, call updateR2 as
follows:

R2t+1[i]←

{
R2t[i− 1] i ∈ [1, 21]

R2t[21]⊕R2t[20]
(4)

4. If R3t[10] = st[51] 6= majt, R3t+1 ← R3t, otherwise, call updateR3 as
follows:

R3t+1[i]←

{
R3t[i− 1] i ∈ [1, 22]

R3t[22]⊕R3t[21]⊕R3t[20]⊕R3t[7]
(5)

Then, the output keystream bit zt is generated as

zt =R1t+1[18]⊕R2t+1[21]⊕R3t+1[22]

=st+1[18]⊕ st+1[40]⊕ st+1[63]
(6)

In the remainder of this paper, we uniformly use st[i] to represent the i-th bit
of the whole state and avoid using R1[j],R2[k],R3[`]’s.

2.2 A Brief Review of Golic’s Guess-and-Determine Attack

In Golic’s guess-and-determine model [1], the adversary aims at recovering the
initial state s1: the state right before the generation of z0. For each step i =
1, 2 . . ., whether the registers R1,R2,R3 are updated or not depends on the
three clock bits si[8, 29, 51]. With the knowledge of si[8, 29, 51], each bit of si+1

4 Mingxing Wang and Yonglin Hao

can be represented as a linear combination of si bits. For each guess si[8, 29, 51] =
(ρ, %, σ) ∈ F3

2, the adversary can deduce 3 linear equations:
si[8] = ρ

si[29] = %

si[51] = σ

According to the output zi, the adversary can further deduce 1 linear equation:

zi = si+1[18]⊕ si+1[40]⊕ si+1[63]

In other words, by guessing 3 clock bits si[8, 29, 51], the adversary can deduce
4 linear equations of state bits. Therefore, in [1], Golic propose a basic attack
that guess 3t clock bits s1[8, 29, 51] . . . st[8, 29, 51]. Based on the output bits
z0, . . . , zt+1, the adversary can deduce a system of averaging 1 + 3t + 4

3 t linear
equations. According to [1], for t ≥ 14.38, the system consisting of 1 + 3t+ 4

3 t ≥
63.32 equations can identify the correct guess uniquely with high probability.
Although such a “high probability” is never actually evaluated, the complexity
of Golic’s attack is usually believed as 23t ≥ 243.15 steps where each step needs
the solution of a linear system.

2.3 The General Process of Zhang’s Near Collision Attack

Unlike Golic’s recovering s1, Zhang’s near collision attack in [8] aims at recov-
ering the init state s0. They divide the 64 s0 bits into constraint part (CP) and
the rest part (RP). The CP part consists of 33 bits related to the 5 output bits
z0, . . . , z4. The other 31 bits are all categorized as RP.

The most crucial step in Zhang’s attack in [8] is the recovery of the 33-bit
CP based on the first 5 keystream bits z0, . . . , z4. Such a CP-recovery step can
be summarized as the list-merging process in Fig. 1. In Fig. 1, the list Lzi...zj
(i < j) contains the state si’s whose state bits are only partially known: for
each si ∈ Lzi...zj , the known bits are at positions λ ⊆ [0, 63] s.t. the knowledge
of si[λ] can produce the consecutive output bits zi, . . . , zj following the A5/1
keystream generation process. Specifically, for a list Lzizi+1 at Level 1, 2 consec-
utive keystream bits zizi+1 can be related to at most 15 state bits at positions
λ0 in (7).

λ0 = {7, 8, 16, 17, 18, 28, 29, 38, 39, 40, 50, 51, 61, 62, 63} (7)

The number of known state bits for 3, 4 and 5 consecutive keystream bits will
grow to at most 21, 27 and 33 respectively. Therefore, finally at Level 4, it is
claimed by Zhang in [8] each element s0 ∈ Lz0z1z2z3 should contain 33 bits.
When merging two lists at the same level, the known bits at the overlapped
positions are to be used as filters: only the elements share the same value at the
overlapped positions can be merged as an element in the list in the next level.
Since each element in the lists contains at most 33 known bits, it is estimated in

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 5

Level 1

Level 3

Level 2

Level 4

Fig. 1. The general process of Zhang’s attack in [8]

[8] that the elements in all lists can be stored with 5 bytes of memory. However,
the merging process in Fig. 1 is not fully implemented, only the process from
Level 1 to 2 is implemented as can be seen from the source codes4. Without
detailed analysis, Zhang theoretically estimated that that the whole list merging
process could be finished with a time complexity 228.3 cipher ticks and the final
list Lz0z1z2z3z4 only contains 216.6 elements.

Another feature of Zhang’s attack is the construction of the 4 initial lists:
they employ the idea of near collision to construct the lists Lz0z1 , . . . , Lz3z4 .
They consider the low-hamming-weight internal state difference (ISD) ∆s as
follows:

D2 := {∆s|hw(∆s) ≤ 2 and ∆s[i] = 0 for all i /∈ λ1} (8)

Apparently, there are
(
15
0

)
+
(
15
1

)
+
(
15
2

)
= 121 elements in the ISD set D2 in (8).

But only 99 ISDs in D2 can result in the 2-bit output difference 0x3. Therefore,
the adversary only needs to store such 99 low-hamming-weight ISD’s in a table
T defined in (9).

T :=
{
∆s ∈ D2|∃s0 ⇒ z0z1(s0)⊕ z0z1(s0 ⊕∆s) = 0x3

}
(9)

For a static 2-bit output z0z1, Algorithm 1 is proposed to generate list of states
Lz0z1 , making sure that all elements in the list can result in z0z1 directly. In
Zhang’s attack, the adversary sets the number limit T = 4 ·215/99 = 1323 which
results in the output list size 7963 and the correct state can be covered by Lz0z1
with probability p1 = 0.9835. In order to improve the probability that the list

4 https://github.com/martinzhangbin/gsmencryption

https://github.com/martinzhangbin/gsmencryption

6 Mingxing Wang and Yonglin Hao

contains the correct state, a distilling process is further proposed. For positive
integers η and ζ, the distilling process first generate η × ζ lists with Algorithm
1; then, intersection and union operations are carried out as (10).

Lz0z1 ← U(η, ζ) =

η⋃
i=1

 ζ⋂
j=1

Li,jz0z1

 where Li,jz0z1 ← getList(z0z1, T) (10)

According to [8], when η = 2, ζ = 6, the correct state can be covered by Lz0z1
with probability 0.9903.

Algorithm 1 Generate the internal states resulting in the given 2-bit output

1: procedure getList(output bits z0z1 ∈ F2
2, the number limit T)

2: Initialize an empty list Lz0z1 ← φ
3: Declare ẑ0ẑ1 ← z0z1 ⊕ 0x3

4: Generate T states ŝ0 that only have non-zero elements at positions λ1 and can
result in the output ẑ0ẑ1

5: for ∆s ∈ T do
6: Construct state s0

7: if s0 can result in the output z0z1 then
8: Update Lz0z1 ← Lz0z1 ∪ {s0}
9: end if

10: end for
11: Return Lz0z1

12: end procedure

After the CP-recovery phase, the adversary has already acquire 216.6 s0’s
in Lz0z1z2z3 . For each such s0, the corresponding s5 can be directly computed
with the knowledge of 33 bits in CP. For RP-recovery, Zhang guess the 3y clock
bits in (11) and construct linear equations of unknown RP bits according both
guesses and output bits z5, . . . , z5+y−1.

s5[8, 29, 51], . . . , s5+y−1[8, 29, 51] (11)

They claim that the RP bits can be recovered with complexity approximately 232

cipher tickes which is also the overall time complexity of the whole attack. But
there is no further details on how the different y’s can affect the complexities.
It is unknown how effective the linear equation system can be in filtering wrong
states. It is also unknown which y should be used to identify the uniquely correct
internal state s0.

We are to show that Zhang’s claims above are not accurate enough in Sect.
5.1. The analysis of y-effects are to be analyzed in detail in Sect. 5.2 only to
find that Zhang’s complexity analysis is underestimated due to the inaccurate
parameters.

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 7

2.4 Unit of the Time Complexity

It is noticeable that the main operation of Golic’s attack in [1] is solving the
linear equation systems. Therefore, they use the time of solving the linear equa-
tion system solving by once as the unit of the time complexity. On the contrary,
Zhang’s near collision attack in [8] regard the cipher tick as the unit of time com-
plexity. However, the linear equation system solving process in Zhang’s attack
is not strictly transformed to cipher ticks. In fact, the number of cipher ticks
for solving a linear equation system depends on the numbers of both the vari-
ables and the equations in the system. The numbers of variables and equations
are dynamic values depending on the bit guesses so an accurate transformation
between the two units is quite difficult. Therefore, in this paper, we use Golic’s
time complexity unit in Golic’s attack, which is the time of solving the linear
equation system by once, and cipher ticks as time complexity units when talking
about the attack in [8].

3 The Move Pattern Guesing Technique

In the Sect. 3.1, we introduce the concept of the move pattern and our move
guessing technique. Sect. 3.2 compares the move guessing with the conventional
clock guessing technique.

3.1 The Basic Concepts of the Move Pattern

For all 23 st[8, 29, 51] values, there are 4 possible move patterns denoted as Move
0, 1, 2 and 3. Each movement corresponds to 2 st[8, 29, 51] values and can also
be represented as linear equations of state bits. Move 0-3 and their equations
are defined as follows:

Move 0 updateR1 in (3), updateR2 in (4) and updateR3 in (5) are all called.
The st[8, 29, 51] values are (0, 0, 0) and (1, 1, 1). The linear equations are:{

st[8]⊕ st[29] = 0

st[8]⊕ st[51] = 0
⇔

{
R1t[8] = R2t[10]

R1t[8] = R3t[10]
(12)

Move 1 Only updateR2 and updateR3 are called. The st[8, 29, 51] values are
(0, 1, 1) and (1, 0, 0). The equations are:{

st[8]⊕ st[29] = 1

st[8]⊕ st[51] = 1
⇔

{
R1t[8] = R2t[10]⊕ 1

R1t[8] = R3t[10]⊕ 1
(13)

Move 2 Only updateR1 and updateR3 are called. The st[8, 29, 51] values are
(1, 0, 1) and (0, 1, 0). The equations are:{

st[8]⊕ st[29] = 1

st[8]⊕ st[51] = 0
⇔

{
R1t[8] = R2t[10]⊕ 1

R1t[8] = R3t[10]
(14)

8 Mingxing Wang and Yonglin Hao

Move 3 Only updateR1 and updateR2 are called. The st[8, 29, 51] values are
(1, 1, 0) and (0, 0, 1). The equations are:{

st[8]⊕ st[29] = 0

st[8]⊕ st[51] = 1
⇔

{
R1t[8] = R2t[10]

R1t[8] = R3t[10]⊕ 1
(15)

We denote the movement st → st+1 as mt ∈ F2
2 = {0, 1, 2, 3}. So the movements

before generating the output keystream bits z0, . . . , zt are m0, . . . ,mt. In our
guess and determine attack, we first guess the movement mt corresponding to
st → st+1 and maintains a linear equation set BC by adding new equations
corresponding to the new movement mt and the output zt. For each step t,
there are 3 linear equations: 2 are from one of (12), (13), (14), (15) according to
the move guess and the rest is from the output zt as

st+1[18]⊕ st+1[40]⊕ st+1[63] = zt (16)

So each move guess can deduce 3 equations. In Sect. 4, we guess the moves
m0, . . . ,mt−1 and maintain a linear equations system to distinguish the correct
state s0 from the wrong ones.

3.2 Move Guessing v.s. Clock Guessing

Our move guessing method differs from the previous guessing strategies. In
previous A5/1 cryptanalysis, the adversary guesses directly the 3 clock bits
st[8, 29, 51] rather than the 2-bit move mt. Apparently, our 2 move bits can
be deduced from the 3 clock bits. Let mt[0, 1] = (µ, ν) ∈ F2

2 and the correspond-
ing clock bits are st[8, 29, 51] = (ρ, %, σ) ∈ F3

2, the two bits (µ, ν) can be deduced
from (ρ, %, σ) as (17)

µ = ρ̄%̄σ ⊕ ρ̄%σ ⊕ ρ%̄σ̄ ⊕ ρ%σ̄
ν = ρ̄%̄σ ⊕ ρ̄%σ̄ ⊕ ρ%̄σ ⊕ ρ%σ̄

(17)

where x̄ is the NOT operation equivalent to x ⊕ 1. From the linear equation
point of view, a 3-bit guess st[8, 29, 51] = (ρ, %, σ) is naturally 3 equations.
The 3 equations are also equivalent to 2 move-oriented equations and 1 bit
value equation st[8] = ρ. For example, if the clock bit values are of the form
st[8, 29, 51] = (ρ, ρ, ρ), which corresponds to the Move 0, the 3 equations can
also be regarded as adding st[8] = ρ to the Move 0 constraints in (12) as shown
in (18).

st[8] = ρ

st[29] = ρ

st[51] = ρ

⇔

st[8] = ρ{
st[8]⊕ st[29] = 0

st[8]⊕ st[51] = 0

(18)

Such an equivalence is also true for other clock bit values and move patterns.
Adding the linear equations of the output in (16), we know that each 3-bit guess
of the clock bits st[8, 29, 51] can deduce 4 equations while each of our 2-bit guess
of mt can deduce 3 equations. On average, our move guessing method seems

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 9

more efficient because each move bit guess can result in 1.5 equations while the
number of linear equations for each clock bit guess is no more than 1.34. But it
remains to be checked whether the clock-oriented equations can also be better
filters for eliminating wrong internal states. To make fair comparison between
the two strategies, we apply both move and clock guessing strategy in the RP-
recovery phase of Zhang’s near collision attack in [8]. The results show that move
guessing can result in slightly lowered complexities than its clock counterpart.
Details can be seen later in Sect. 5.2 and Sect. 5.3.

4 Guess-and-Determine Attack based on the Move
Guessing Technique

Instead of Golic’s recovering s1, we propose a state recovery attack on A5/1
targeting at s0 so as to make a fair comparison with the near collision attack
in [8]. As can be seen, the move equations (12), (13), (14), (15) and the output
equation (16) correspond to the internal state at different time instances. But
our attack is targeted to recovering the initial state s0. Therefore, we need to
represent the internal states at different time instance t with s0 so that the
equations are represented by s0 bits as well. With the knowledge ofm0, . . . ,mt−1,
st can be iteratively deduced from s0 and each st bit can be expressed as a linear
combination of s0 bits. Since a linear combination of s0 bits can also be regarded
as a inner-product of s0 and a 64-bit word w ∈ F64

2 , we can track each s0, . . . , st

bits with 64 64-bit words denoted as W 0, . . . ,W t ∈ (F64
2)64. The initial W 0

corresponds to s0 is defined naturally as (19)

W 0 = (e0, . . . , e63), where ei[j] =

{
1 i = j

0 j ∈ [0, 63]\{i}
for i = 0, . . . , 63 (19)

so as to make sureW 0[i]·s0 = ei·s0 = s0[i] for i = 0, . . . , 63. WithW 0, . . . ,W t−1,
the word vector W t can be deduced from W t−1 according to the movement
mt=1 by calling W t ← UpdW(mt−1,W t−1) described in Algorithm 2. With the
knowledge of W t, each state bit of st can be uniformly expressed as a linear
combination of s0 bits as

st[i] = W t[i] · s0, i = 0, . . . , 63 (20)

For t consecutive movementsm0, . . . ,mt−1 and the corresponding output z0, . . . , zt−1,
we can deduce the corresponding linear equations set BC as

BC ← getBC((m0, . . . ,mt−1), (z0, . . . , zt−1))

where getBC is defined as Algorithm 3. The linear equations set BC can be
regarded as a linear equation system in (21)

AxT = bT , where A ∈ F3t×64
2 ,x ∈ F64

2 , b ∈ F3t
2 (21)

10 Mingxing Wang and Yonglin Hao

and the solutions to the linear system in (21) is exactly the possible values of
the internal state s0’s resulting in the output keystream bits z0, . . . , zt−1. The
number of solutions to (21) depends on the rank of the matrix A and its extended
matrix

E = [A, bT] (22)

If rank(A) = rank(E), there will be 264−rank(A) solutions; otherwise, there
will be no solutions at all. Apparently, the matrix A and the vector b are
both deduced according to the move guesses m0, . . . ,mt−1 and the output bits
z0, . . . , zt−1. For the correct guess of m0, . . . ,mt−1, the relation rank(A) =
rank(E) holds constantly; for the wrong guesses, however, there should be a
probability 1− αt (0 ≤ αt ≤ 1) that rank(A) 6= rank(E). Based on such a find-
ing, the general process of our state-recovery attack can be divided naturally
into 3 main steps:

S1 Guess moves m0, . . . ,mt−1 and maintain a linear system in (21)
S2 Do the matrix rank test and discard the wrong guesses satisfying rank(A) 6=

rank(E)
S3 Deduce the remaining s0 candidates and identify the correct s0 with addi-

tional output bits zt, . . . , z`−1 generated by the encryption oracle

Therefore, the detailed description of our move-guessing-based state-recovery
attack is as follows:

1. Query the A5/1 encryption oracle for ` keystream bits z0, . . . , z`−1

2. Initialize an empty set S of s0 candidates
3. For some t < `, we guess the 22t movement values of (m0, . . . ,mt−1), ac-

quire the equations BC ← getBC((m0, . . . ,mt−1), (z0, . . . , zt−1)) by calling
Algorithm 3 (S1) and do the following substeps:
(a) Deduce the A and b in (21) according to BC and compute the extended

matrix E in (22)
(b) Compute rank(A) and rank(E), if rank(A) 6= rank(E), such a move-

ment guess is wrong, go back to Step 2 for the next movement guess
(S2)

(c) For all 264−rank(A) solutions to AxT = bT , set ŝ0 ← x and generate the
keystream bits ẑ0, . . . , ẑt−1, ẑt, . . . , ẑ`−1

(d) If (ẑt, . . . , ẑ`−1) = (zt, . . . , z`−1), add such ŝ0 into S (S3)
4. Return S

When ` is large enough, there should be only 1 element in S which is exactly
the correct internal state s0.
Complexity Analysis. In Step 3, there are 22t candidate moves (m0, . . . ,mt−1)
and not all of them can pass the rank(A) = rank(E) test Step 3.(b). We sup-
pose that there is a positive number 0 ≤ αt ≤ 1 that averaging αt ·22t candidate
moves can pass the test. We further denote the averaging rank(A) as βt. With
αt, βt, the averaging time complexity can be computed as follow:

Comp = 22t + αt · 22t+64−βt = 22t + 22t+64−βt+logαt (23)

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 11

We randomly select 230 ((m0, . . . ,mt−1), (z0, . . . , zt−1)) pairs and do the 3.(b)
test to compute the averaging αt and βt for t’s. We find that when t < 14,
αt are larger than 0.5 (logαt ≥ −1) and βt ≤ 3t so the overall complexity is
constantly larger than 250. For 14 ≤ t ≤ 29, the αt, βt and Comp are listed
in Table 1. As can be seen, the lowest time complexity appears at t = 21 with
Comp = 243.91. As can be seen in Table 1, the order βt has already climbed to
almost 64 for t = 27. So we can safely set ` = 32 to filter the wrong move guesses.
According to our experiment, ` = 32 is well enough to identify the correct s0

so the data complexity of our attack is only 32 bits. The memory complexity
is only BC and the corresponding matrix A as well as its extended matrix E in
(21) and (22). The memory complexity is only O(t) and, to be more specific,
2 ·(64+1) ·3t ≤ 12480 bits which is bounded by 2KB. So the memory complexity
is practical and negligible in comparison with previous attacks.
The Effect of the Branching Technique. In both Golic’s and Zhang’s at-
tacks, they claim to have used a “branching” technique when deducing equations
[1,8]. The branching technique based on the fact that, with the current BC, some
of the state bits are known and the following clock bits can be deduced from
such known bits. Such a technique can be applied at the beginning of Step 3 so
that some of the 22t do not need to be guessed so Step 3.(a) may only need to
process γ22t moves where γ ≤ 1. Although different γ values may be deduces
from different bit guesses, the number of candidate moves passing Step 3.(a) is
still averaging αt2

2t so the size of γ is lower bounded by αt. Therefore, tak-
ing the effect of branching technique into account, the complexity in (23) can
reformulated as

Comp = 22t+log γ + 22t+64−βt+logαt ≥ 22t+logαt + 22t+64−βt+logαt (24)

Without doubt, the branching technique has some effects for lowering the com-
plexity but, as can be seen in Table 1 it cannot change dominating factor of the
overall complexities. In [1], based on the assumption that BC acts like a randomly
constructed system, the αt in Golic’s attack is extremely small resulting in an
overestimation to the effect of the branching technique. Such wrong evaluations
are applied directly by Zhang in [8].

Table 1. The averaging αt and βt in (23) with 230 random tests

t βt logαt logComp t βt logαt logComp

14 41.959 -0.028 50.013 22 61.604 -3.971 44.417

15 44.868 -0.095 49.037 23 62.781 -5.915 46.055

16 47.683 -0.231 48.085 24 63.433 -8.420 48.006

17 50.381 -0.468 47.151 25 63.755 -11.173 50.001

18 52.955 -0.813 46.233 26 63.904 -14.060 52.000

19 55.409 -1.270 45.330 27 63.967 -17.027 54.000

20 57.734 -1.852 44.481 28 63.990 -20.021 56.000

21 59.860 -2.671 43.914 29 63.997 -23.117 58.000

12 Mingxing Wang and Yonglin Hao

5 Revisit Zhang’s Near Collision Attack

As has been briefly mentioned in Sect. 2.3, the CP-recovery phase of the near
collision attack has not been fully implemented: only the 1st step from Level
1 to 2 is implemented [8]. The details of the following CP-recovery steps and
the whole RP-recovery phase are absent, leaving it unknown whether the whole
attack can work as claimed.

To verify their attack, we fully implement it only to find several mistakes
and the complexity evaluation of the whole attack is underestimated. Sect. 5.1
points out the inaccurate evaluations of several crucial parameters in [8]. Sect.
5.2 supplements Zhang’s attack with all the missing details in the CP- and RP-
recovery phases and gives a correct complexity evaluation to the original attack
in [8]. Sect.5.3 replaces Zhang’s clock-guess-based RP-recovery with our move-
guess-based one to show the advantage of our technique.

5.1 Inaccurate Evaluations of Some Attack Parameters

There are 2 kinds of attack parameters being inaccurately evaluated in [8]: the
p1 used in the distilling phase along with the success probability deduced from
p1; the 4 parameters related to the complexities of the CP-Recovery process.

p1 and the Success Probability. In [8], it is stated that, for T = 4 · 215/99,
a randomly constructed list Lz0z1 ← getList(z0z1, T) acquired by calling Algo-
rithm 1 is of size 7963 and the correct internal state lies in Lz0z1 with probability
p1 = 0.9835. However, we repeat the experiment 106 times and the correct state
lies in Lz0z1 for only 972436 times. So it is safe for us to claim that the actual p1
is 0.9725: Zhang’s evaluation in [8] is inaccurate. The reason why Zhang made
such a mistake is unknown. Maybe their using RC4 as the source of randomness
is not so qualified. Our experiments have tried various random generators in-
cluding Snow-V [13], AES [14] etc. All these experiments reveal that the actual
p1 is 0.9725 rather than 0.9835.

With the corrected p1, the probability for a distilled list U in (10) to cover the
correct state should be reevaluated. Our corrected evaluation and Zhang’s are
both shown in Table 2. We read the source codes5 corresponding to [8] carefully
only to find that the |U | parameter is wrong because of wrong implementation:
when they try to get (η, ζ), they actually do ζ intersect operations so they actu-
ally acquire the U(η, ζ + 1) instead. As a consequence, the size |U |’s are smaller
than expected. Since the attack can only succeed when the correct internal state
lies in U , so the parameter Prob. in Table 2 is actually the success probability
to the whole attack. Therefore, the success probability of Zhang’s attack should
be revised as well.

5 https://github.com/martinzhangbin/gsmencryption

https://github.com/martinzhangbin/gsmencryption

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 13

Table 2. Our evaluation (left) v.s. Zhang et al.’s (right, quoted from [8])

η ζ |U | Prob.

2 3 8109 0.9935
2 4 8050 0.9887
2 5 8009 0.9830
2 6 7948 0.9761

η ζ |U | Prob.

2 3 8065 0.9940
2 4 7989 0.9927
2 5 7934 0.9912
2 6 7835 0.9903

4 Parameters Related to the CP-Recovery Process. Since the attack in
[8] has not been fully implemented, the estimation of 4 related parameters are
inaccurate. Both our and Zhang’s evaluations of the 4 parameters are listed in
Table 3. We provide detailed explanations as follows.

Table 3. 4 Parameters Related to the CP-Recovery Process: Zhang Evaluation v.s.
Ours

Parameter Zhang’s Eval. [8] Our Eval.

Cipher ticks for the merging process
in Fig. 1

228.3 240.92†

The number of Lz0z1z2z3z4 candi-
dates

216.6 224.21

Bytes for storing a Lz0z1z2z3z4 ele-
ment

5 9

The number of known bits for each
Lz0z1z2z3z4 element

33 30.14

†: quadratic time implementations

Since the merging of two lists L1, L2 requires |L1| · |L2| (the time complexity
of the merging algorithm in [8] is |L1|+ |L2|) operations, it is impossible to get
an exact evaluation to the complexities without actually knowing the sizes of all
the lists. According to our implementation, the sizes of the lists are as follows:

|Lzizi+1
| ≈ 212.95, for i = 0, 1, 2, 3

|Lzizi+1zi+2 | ≈ 216.70, for i = 0, 1, 2

|Lzizi+1zi+2zi+3 | ≈ 220.46, for i = 0, 1

|Lz0z1z2z3z4 | ≈ 224.21

(25)

Therefore, the complexity of the merging process is dominated by Level 3 to
4 which is approximately 220.46×2 = 240.92 using the C++ implementation: far
beyond 228.3. The size of Lz0z1z2z3z4 is 224.21 > 216.6. The reason is that the
middle lists are used more than once in the merging phase, while in the original
near collision attack, each list directly generated can only be used once.

The merging process in Fig. 1 takes two lists denoted as Lt and Lt+1. Lt
contains the partial states of st while Lt+1 consists of partial states of st+1.

14 Mingxing Wang and Yonglin Hao

According to Sect. 3, a st should take a move mt ∈ {0, 1, 2, 3} before reaching
st+1 and that move mt is decided by the three clock bits st[8, 29, 51]. So the
merging step L̃t ← merge(Lt, Lt+1) is as follows:

1. Initialize the merged list as empty L̃t ← φ.
2. For each (st, st+1) ∈ Lt × Lt+1, do the following steps:

(a) Identify the positions of the known bits in st denoted as λ0 ⊆ [0, 63].
(b) Determine the move mt according to 3 known clock bits st[8, 29, 51].

(c) Determine the state ŝt s.t. ŝt
mt

−−→ st+1

(d) Identify the positions of the known bits in ŝt denoted as λ1 ⊆ [0, 63]
(e) If ŝt[λ0 ∩ λ1] = st[λ0 ∩ λ1], store the vector s̃t ← ŝt ∨ st in L̃t where ∨

is bitwise OR. The known bits of the newly generated s̃t is λ̃← λ0 ∪λ1.
3. Return L̃t

According to the description above, any element s ∈ L should not only contain
the value but the positions, denoted as λ, of the known bits as well. At Level
1, since all list are generated through Algorithm 1, all elements share the same
known-bit positions in (7). But the following Example 1 shows that different
moves will result in different known bit positions. Example 1 indicates that the
known bits of the merged partial state s̃t may not be exactly the 21 bits given
in [8]: they are also likely to be subsets of the 21 bits.

Example 1. Let (s0, s1) ∈ Lz0z1 × Lz1z2 . We have λ0 = λ in (7). If the move
m0 = 0 (s0[8, 29, 51] ∈ {(0, 0, 0), (1, 1, 1)} according to (17) in Sect. 3.2), the
known bit positions for s1 should be

λ1 := {7−1, 8−1, 16−1, 17−1, 18−1, 28−1, 29−1, 38−1, 39−1, 40−1, 50−1, 51−1, 61−1, 62−1, 63−1}.

and λ̃ = λ0 ∪ λ1 is of size |λ̃| = 21. If the move is m0 = 1 (s0[8, 29, 51] ∈
{(1, 0, 0), (0, 1, 1)}), we have

λ1 := {7, 8, 16, 17, 18, 28−1, 29−1, 38−1, 39−1, 40−1, 50−1, 51−1, 61−1, 62−1, 63−1}.

and |λ̃| = 19.

In order to keep merging the lists in Level 2-4, λ̃ containing the known bit
positions should also be stored which takes the same size of the partial states.
Since the lists in Level 4 contain partial states of 33 bits, the λ̃’s are of the same
size of 33 bits. So the elements in the lists requires at most d2 · 33/8e = 9 bytes.
Same with Example 1, the λ̃ for s̃0 ∈ Lz0z1z2z3z4 are more likely to be subsets of
the 33 bits. In fact, according to our experiments, the number of known bits of
Lz0z1z2z3z4 elements are usually |λ̃| ≈ 30.14, which is below 33. |λ̃| can only be
33 when m0 = . . . = m4 = 0. Such an event can happen with probability 2−10.

5.2 Near Collision Attack with Original Clock-Guess-Based
RP-Recovery

We have supplemented all the details of the list merging operations in Sect. 5.1.
The whole CP-recovery phase in Fig. 1 can now be carried out. At the end of

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 15

CP-recovery, the adversary have got the list Lz0z1z2z3z4 . Each s̃0 ∈ Lz0z1z2z3z4
corresponds to a set λ̃ ⊆ [0, 63] containing the positions of known state bits and it
guarantees that the first 5 keystream bits are exactly z0, . . . , z4. The known bits
s̃0[λ̃] can deduce directly the first 5 moves m0, . . . ,m4. Therefore, the equations
for each s̃0 is simply BC ← getBC((m0, . . . ,m4), (z0, . . . , z4)) adding the bit
value constraints of s̃0[λ̃]. The number of equations is 15 + |λ̃|.

Then, according to Zhang in [8], the RP part is to be recovered by guess-
ing the unknown bits of s̃0 corresponding to the clock bits si[8, 29, 51] for
i = 5, 6, . . . , t − 1 (equivalent to setting y in (11) as y = t − 5) and construct
the corresponding linear equation system according to the clock bits and the
output bits z0, . . . , zt−1 as in (21). According to the analysis in Sect. 3.2, the
clock guessing strategy is equivalent to adding bit value constraint to the cor-
responding move-oriented equations. Therefore, for the guesses of the 3(t − 5)
bits s5[8, 29, 51], . . . , st−1[8, 29, 51], the number of deduced equations is 4(t− 5).
So the whole process of Zhang’s near collision attack can now be summarized as
follows:

1. Query the A5/1 encryption oracle for ` keystream bits z0, . . . , z`

2. Run the merging process in Fig. 1 and acquire the list of candidates Lz0z1z2z3z4
for the CP part of A5/1.

3. Initialize an empty set S of s0 candidates
4. For each s̃0 ∈ Lz0z1z2z3z4 (RP-Recovery)

(a) Deduce the 5 moves (m0, . . . ,m4) and the known bit position set λ̃
(b) For some t ∈ [5, `− 1], we guess the 3(t− 5) clock bits corresponding to

s5[8, 29, 51], . . . , st−1[8, 29, 51] and do the following substeps:
i. Deduce the move guesses m5, . . . ,mt−1 and deduce the equations

BC ← getBC((m0, . . . ,mt−1), (z0, . . . , zt−1))

ii. For all i ∈ λ̃, add the linear equations xi = s̃0[i] to BC
iii. For si[8] (i = 5, . . . , t − 1), add the bit value constraint W i[8] · x =

si[8] to BC
iv. Deduce the A and b in (21) according to BC and compute the ex-

tended matrix E in (22)
v. Compute rank(A) and rank(E), if rank(A) 6= rank(E), such a

clock guess is wrong, go back to Step (b) for the next guess of
s5[8, 29, 51], . . . , st−1[8, 29, 51]

vi. For all 264−rank(A) solutions to AxT = bT , set ŝ0 ← x and generate
the keystream bits ẑ0, . . . , ẑt−1, ẑt, . . . , ẑ`−1

vii. If (ẑt, . . . , ẑ`−1) = (zt, . . . , z`−1), add such ŝ0 into S
5. Return S

Complexity Analysis. According to (25), there are 224.21 candidate s̃0 in
Lz0z1z2z3z4 . In Step 4.(b), there are 23t−15 possible guesses and we assume that
only αt · 23t−15 of them can pass the rank(A) = rank(E) test at Step 4.(b).v
where 0 ≤ αt ≤ 1. We denote the averaging rank(A) as βt. The analysis in Sect.
5.1, the merging process in Step 2 has complexity 240.92 using the quadratic time

16 Mingxing Wang and Yonglin Hao

implementation, anyway this part is not dominated even with the linear time
method in [8]. With αt, βt, the averaging time complexity can be computed as
(27).

Comp = 240.92 + 224.21+3t−15 + αt · 224.21+3t−15+64−βt

= 240.92 + 29.21+3t + 273.21+3t+logαt−βt
(26)

Same with Sect. 3, we randomly select 230
(
s̃0, s5[8, 29, 51], . . . , st−1[8, 29, 51], (z5, . . . , zm)

)
triplets and do the 4.(b).v test to compute the averaging αt and βt for different
t’s. For 5 ≤ t ≤ 21, the αt, βt and Comp are listed in Table 5. As can be seen, the
complexities are constantly larger than 252, indicating that Zhang’s complexity
evaluation in [8] is inaccurate and is no better than the new guess-and-determine
attack in Sect. 4. The lowest time complexity is 252.159 and it appears at t = 12.
The memory complexity is dominated by the size of Lz0z1z2z3z4 which is 224.21

according to (25). Zhang has already claimed that the attack can only suc-
ceed when the exact si lies in the corresponding list Lzizi+1

for i = 0, 1, 2, 3 in
Fig. 1. According to the Sect. 5.1, the success probability can be evaluated as
p41 ≈ 0.8942.
The Effect of the Branching Technique. Same with the analysis in Sect.
4, the branching technique can also be applied to Step 4 and the complexity in
(26) can be reformulated as

Comp = 240.92 + 29.21+3t+log γ + 273.21+3t+logαt−βt

≥ 240.92 + 29.21+3t+logαt + 273.21+3t+logαt−βt

It does not affect the dominating factor of the whole attack so the overall com-
plexity remains unchanged.

Table 4. The averaging αt and βt in (26) with 230 random tests

t βt logαt logComp t βt logαt logComp

6 33.443 -0.256 57.511 14 59.715 -0.989 54.646

7 37.424 -0.285 56.501 15 60.510 -1.455 56.560

8 41.423 -0.300 55.487 16 61.388 -2.586 58.223

9 45.421 -0.307 54.482 17 62.273 -4.668 60.387

10 49.415 -0.357 53.438 18 62.975 -7.000 63.233

11 53.470 -0.430 52.311 19 63.501 -9.483 66.213

12 56.494 -0.570 52.159 20 63.834 -12.293 69.210

13 58.436 -0.752 53.073 21 63.980 -15.476 72.210

5.3 Modified Near Collision Attack with Move-Based RP-Recovery

According to the relationship between our move guess and the conventional clock
guess strategies revealed in Sect. 3.2, Zhang’s clock-guess-based RP-recovery in
Sect. 5.2 can be replaced with our move-guess-based strategy. We simply rewrite
the RP-recovery phase of this modified attack as follows:

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 17

4. For each s̃0 ∈ Lz0z1z2z3z4 (RP-Recovery)

(a) Deduce the 5 moves (m0, . . . ,m4) and the known bit position set λ̃

(b) For some t ∈ [5, `− 1], we guess the 22(t−5) movements (m5, . . . ,mt−1),
we acquire the equations BC ← getBC((m0, . . . ,mt−1), (z0, . . . , zt−1))
and do the following substeps:

i. For all i ∈ λ̃, add the linear equations xi = s̃0[i] to BC
ii. Deduce the A and b in (21) according to BC and compute the ex-

tended matrix E in (22)
iii. Compute rank(A) and rank(E), if rank(A) 6= rank(E), such a

movement guess is wrong, go back to Step (b) for the next guess
of moves m5, . . . ,mt−1

iv. For all 264−rank(A) solutions to AxT = bT , set ŝ0 ← x and generate
the keystream bits ẑ0, . . . , ẑt−1, ẑt, . . . , ẑ`−1

v. If (ẑt, . . . , ẑ`−1) = (zt, . . . , z`−1), add such ŝ0 into S

Complexity Analysis. In Step 4.(b), there are 22t−10 candidate moves (m0, . . . ,mt)
and we assume that only αt ·22t−10 moves can pass the rank(A) = rank(E) test
at Step 4.(b).iii where 0 ≤ αt ≤ 1. We denote the averaging rank(A) as βt.
According to (25), the size of Lz0z1z2z3z4 is approximately 224.21. The analysis
in Sect. 5.1, the merging process in Step 2 has complexity 240.92. With αt, βt,
the averaging time complexity can be computed as (27).

Comp = 240.92 + 224.21+2t−10 + αt · 224.21+2t−10+64−βt

= 240.92 + 214.21+2t + 278.21+2t+logαt−βt
(27)

For 6 ≤ t ≤ 21, the αt, βt and Comp are listed in Table 5. As can be seen, the
complexities are constantly larger than 250 which is no better than our guess-and-
determine attack in Sect. 4 but is lower than Zhang ’s original one in Sect. 5.2.
The lowest possible complexity is 250.567 and it appears at t = 16. The memory
complexity and the success probability are identical to those of Zhang ’s original
attack which are 224.21 and 0.8942 respectively. It is noticeable that the βt in
Table 4 grows faster than that in Table 5, indicating that clock guess can result
in a faster growth in the order of matrix in (21). But such a growth cannot
guarantee a better filter when applied to state-recovery attacks: this is a fact
that can only be discovered by solid experiments and accurate implementations.

The Effect of the Branching Technique. Same with the analysis in Sect.
4, the branching technique can also be applied to Step 4 and the complexity in
(27) can be reformulated as

Comp = 240.92 + 214.21+2t+log γ + 278.21+2t+logαt−βt

≥ 240.92 + 214.21+2t+logαt + 278.21+2t+logαt−βt

It does not affect the dominating factor of the whole attack so the overall com-
plexity remains unchanged.

18 Mingxing Wang and Yonglin Hao

Table 5. The averaging α and β in (27) with 230 random tests

t βt logαt logComp t βt logαt logComp

6 31.957 -0.160 58.094 14 54.675 -0.524 51.016

7 34.683 -0.203 57.325 15 56.735 -0.848 50.643

8 37.584 -0.217 56.409 16 58.302 -1.415 50.567

9 40.548 -0.223 55.438 17 59.485 -2.202 50.789

10 43.515 -0.234 54.461 18 60.401 -3.194 51.427

11 46.457 -0.259 53.494 19 61.146 -4.403 52.635

12 49.371 -0.300 52.540 20 61.788 -5.736 54.330

13 52.159 -0.370 51.682 21 62.365 -7.287 56.238

6 Conclusion and Future Works

In this paper, we revisit 2 memoryless state-recovery methods on A5/1 stream
cipher namely the guess-and-determine attack and the near collision attack.
For the guess-and-determine attack, we propose a new guessing technique and
provides a new attack with practically verified complexities. For the near collision
attack, we revisit Zhang’s attack in [8]. We point out the mistake in [8] and
provide correct complexity evaluations. According to our analysis, the Zhang’s
near collision attack can work for A5/1 but does not have an advantage over the
new guess-and-determine attack method.

About future works, it is noticeable that we propose a new guess-and-determine
attack to recover the state s0 while Golic’s original one targets at s1 [1]. Ac-
cording to the analysis in Sect. 4, the filtering strength of the deduced linear
equation system BC may not be as good as that of a random system. Since Golic
constantly regards the BC’s of wrong guesses as random systems, it is highly
likely that the time complexity of Golic’s original guess-and-determine attack
be wrongly evaluated, as pointed out by some previous literature. In order to
acquire the correct time complexity evaluation, one has to practically compute
the αt and βt’s following Golic’s guessing strategy, which is an obvious direction
for future works.

References

1. Golic, J.D.: Cryptanalysis of alleged A5 stream cipher. In Fumy, W., ed.: EURO-
CRYPT’97. Volume 1233 of LNCS., Springer, Heidelberg (May 1997) 239–255

2. Biham, E., Dunkelman, O.: Cryptanalysis of the A5/1 GSM stream cipher. In Roy,
B.K., Okamoto, E., eds.: INDOCRYPT 2000. Volume 1977 of LNCS., Springer,
Heidelberg (December 2000) 43–51

3. Shah, J., Mahalanobis, A.: A New Guess-And-Determine Attack On The A5/1
Stream Cipher. Cryptology ePrint Archive, Report 2012/208 (2012) http://

eprint.iacr.org/2012/208.
4. Maximov, A., Johansson, T., Babbage, S.: An improved correlation attack on A5/1.

In Handschuh, H., Hasan, A., eds.: SAC 2004. Volume 3357 of LNCS., Springer,
Heidelberg (August 2004) 1–18

http://eprint.iacr.org/2012/208
http://eprint.iacr.org/2012/208

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 19

5. Li, Z.: Optimization of Rainbow tables for practically cracking GSM A5/1 based
on validated success rate modeling. In Sako, K., ed.: CT-RSA 2016. Volume 9610
of LNCS., Springer, Heidelberg (February / March 2016) 359–377

6. Gendrullis, T., Novotný, M., Rupp, A.: A real-world attack breaking A5/1 within
hours. In Oswald, E., Rohatgi, P., eds.: CHES 2008. Volume 5154 of LNCS.,
Springer, Heidelberg (August 2008) 266–282

7. Barkan, E., Biham, E.: Conditional estimators: An effective attack on A5/1. In
Preneel, B., Tavares, S., eds.: SAC 2005. Volume 3897 of LNCS., Springer, Heidel-
berg (August 2006) 1–19

8. Zhang, B.: Cryptanalysis of GSM encryption in 2G/3G networks without Rainbow
tables. In Galbraith, S.D., Moriai, S., eds.: ASIACRYPT 2019, Part III. Volume
11923 of LNCS., Springer, Heidelberg (December 2019) 428–456

9. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In Schneier, B., ed.: FSE 2000. Volume 1978 of LNCS., Springer, Heidelberg (April
2001) 1–18

10. Pornin, T., Stern, J.: Software-hardware trade-offs: Application to A5/1 crypt-
analysis. In Koç, Çetin Kaya., Paar, C., eds.: CHES 2000. Volume 1965 of LNCS.,
Springer, Heidelberg (August 2000) 318–327

11. Lu, J., Li, Z., Henricksen, M.: Time-memory trade-off attack on the GSM A5/1
stream cipher using commodity GPGPU - (extended abstract). In Malkin, T.,
Kolesnikov, V., Lewko, A.B., Polychronakis, M., eds.: ACNS 15. Volume 9092 of
LNCS., Springer, Heidelberg (June 2015) 350–369

12. Derbez, P., Fouque, P., Mollimard, V.: Fake near collisions attacks. IACR Trans.
Symmetric Cryptol. 2020(4) (2020) 88–103

13. Ekdahl, P., Johansson, T., Maximov, A., Yang, J.: A new SNOW stream cipher
called SNOW-V. IACR Trans. Symmetric Cryptol. 2019(3) (2019) 1–42

14. Standards, N.: Specification for the advanced encryption standard (aes). FIPS-197
(2001)

20 Mingxing Wang and Yonglin Hao

Algorithm 2 Deduce the equation word set according to a movement

1: procedure UpdW(movement mt ∈ {0, 3}, words W t ∈ (F64
2)64)

2: if mt = 0 then
3: At ← UpdWR(W t, 1)
4: Bt ← UpdWR(At, 2)
5: W t+1 ← UpdWR(Bt, 3)
6: end if
7: if mt = 1 then
8: Bt ← UpdWR(W t, 2)
9: W t+1 ← UpdWR(Bt, 3)

10: end if
11: if mt = 2 then
12: At ← UpdWR(W t, 1)
13: W t+1 ← UpdWR(At, 3)
14: end if
15: if mt = 3 then
16: At ← UpdWR(W t, 1)
17: W t+1 ← UpdWR(At, 2)
18: end if
19: Return W t+1

20: end procedure

1: procedure UpdWR(words W ∈ (F64
2)64, register number n ∈ {1, 2, 3})

2: Initialize X ∈ (F64
2)64 as X ←W

3: if n = 1 then
4: for i = 1, . . . , 18 do
5: Update the i-th entry of X as X[i]←W [i− 1]
6: end for
7: Compute the 0-th entry of X as X[0] ← W [18] ⊕W [17] ⊕W [16] ⊕W [13]

according to (3)
8: end if
9: if n = 2 then

10: for i = 20, . . . , 40 do
11: Update the i-th entry of X as X[i]←W [i− 1]
12: end for
13: Compute the 19-th entry of X as X[19]←W [40]⊕W [39] according to (4)
14: end if
15: if n = 3 then
16: for i = 42, . . . , 63 do
17: Update the i-th entry of X as X[i]←W [i− 1]
18: end for
19: Compute the 41-th entry of X as X[19]←W [63]⊕W [62]⊕W [61]⊕W [48]

according to (5)
20: end if
21: Return X
22: end procedure

Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1 21

Algorithm 3 Deduce the set of equations according to the given moves and
output bits

1: procedure getBC(movements (m0, . . . ,mt−1) ∈ {0, 3}t, output bits
(z0, . . . , zt−1) ∈ Ft

2)
2: Initialize the words W 0 ← (e0, . . . , e63) according to (19)
3: Initialize the linear equations set as empty: BC ← φ
4: Initialize x = (x0, . . . , x63) as vector of 63 unknown boolean variables corre-

sponding to the 64 state bits of s0

5: for i = 0, 1, . . . , t− 1 do
6: if mi = 0, 1, 2, 3 then
7: Update BC by adding the following equations corresponding to (12), (13),

(14), (15): {
(W i[8]⊕W i[29]) · x = δ(mi)

(W i[8]⊕W i[51]) · x = %(mi)

where (δ(mi), %(mi)) = (0, 0), (1, 1), (1, 0), (0, 1) for mi = 0, 1, 2, 3 respectively
8: end if
9: Deduce W i+1 according to W i by calling W i+1 ← UpdW(mi,W i) defined in

Algorithm 2
10: Update BC by adding the following linear equations corresponding to (16)

(W i+1[18]⊕W i+1[40]⊕W i+1[63]) · x = zi

11: end for
12: Return BC
13: end procedure

	Revisit Two Memoryless State-Recovery Cryptanalysis Methods on A5/1
	Introduction
	Preliminary
	The Keystream Generation Procedure of A5/1
	A Brief Review of Golic's Guess-and-Determine Attack
	The General Process of Zhang's Near Collision Attack
	Unit of the Time Complexity

	The Move Pattern Guesing Technique
	The Basic Concepts of the Move Pattern
	Move Guessing v.s. Clock Guessing

	Guess-and-Determine Attack based on the Move Guessing Technique
	Revisit Zhang's Near Collision Attack
	Inaccurate Evaluations of Some Attack Parameters
	p1 and the Success Probability.
	4 Parameters Related to the CP-Recovery Process.

	Near Collision Attack with Original Clock-Guess-Based RP-Recovery
	Modified Near Collision Attack with Move-Based RP-Recovery

	Conclusion and Future Works

