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Abstract. As a generalized integral property, the division property can
be used to search integral distinguishers of symmetric ciphers by taking
the advantage of automatic tools, such as Mixed Integer Linear Program-
ming (MILP) and Boolean Satisfiability Problem (SAT) solvers. In this
case, the accuracy of corresponding models will influence the resulting
distinguishers. In this paper, we present a new technique to characterize
the division property propagation of linear layers. Firstly, we study the
impact of a linear layer implementation on its division property propa-
gations. We found that division trails derived from an optimized imple-
mentation of a linear layer can be more accurate than the S method,
and different implementations can eliminate some different invalid di-
vision trails. Thus, we can eliminate a large number of invalid division
trails by combining different implementations. As an application of our
technique, we have searched distinguishers for Midori64, Skinny64 and
LED. As a result, we can obtain the same longest distinguishers as the
ZR method and the HW method, which are the exact modeling of lin-
ear layers. Moreover, our method can be used with both MILP and SAT,
while the HW method can only work with SAT. In addition, the number
of constraints with the HW method increases quadratically, however it
increases linearly with our method.

Keywords: Division property · Linear Layer · Optimized implementa-
tion · Integral attack · Automatic tool

1 Introduction

Differential cryptanalysis [1], linear cryptanalysis [2] and integral cryptanaly-
sis [3] are the most effective methods for attacking iterative block ciphers so
far. In 1997, Daemen et al. proposed Square [4] block cipher and introduced
a new method named Square attack to analyze the security of Square cipher.
This attack method is the earliest form of integral attack. Afterwards, integral
attack [3] was formally proposed by Knudsen and Wagner at FSE 2002. The core
idea of integral attack is to find an integral distinguisher so that the adversary
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can use this distinguisher to achieve a distinguishing attack or a key-recovery
attack on the objective cipher. Thus, the most essential step in integral attacks
is to construct effective integral distinguishers.

Currently, the most effective way to find a distinguisher is to study the evo-
lution of integral properties in the encryption process and then judge whether
there exists balanced bits in the corresponding output state. The division prop-
erty (DP) [5], which was proposed as a generalized integral property by Todo at
EUROCRYPT 2015, can be applied to search for longer integral distinguishers.
With this technique, Todo constructed a new integral distinguisher and pre-
sented the full-round attack on MISTY1 in [6]. Afterwards, a more accurate DP
called bit-based division property (BDP) [7] was introduced by Todo and Morii
at FSE 2016. However, the BDP is only adapted to ciphers whose block sizes are
upper bounded by 32 due to the huge time and memory complexities. In order
to overstride this barrier, Xiang et al. [8] applied MILP method to search for
integral distinguishers based on BDP at ASIACRYPT 2016, which allowed us
to analyze primitives whose block sizes are larger than 32 using BDP. Thanks
to this automatic method, what we need to do when searching for distinguish-
ers is to construct an MILP model to characterize the propagation of BDP and
use off-the-shelf solvers like Gurobi1 to solve the model. Naturally, it is worth
studying how to achieve the accurate description of the propagation of BDP in
the MILP model, since the more accurate the corresponding MILP model is, the
more balanced bits or longer distinguishers might be obtained.

The description of BDP propagations of non-linear layers (e.g., Sboxes [8],
AND [8,9] and modular addition [10] operations) has been discussed extensively.
As for linear layers, there are three main methods to constrain the BDP propa-
gation.

S method [9]. It was proposed by Sun et al. for a matrix M ∈ Fn×n2 , and
the core of this method is to decompose a complex matrix into a series of
COPY and XOR operations and then model these basic operations with
some auxiliary variables. The modeling rules of COPY and XOR have been
already handled in [8]. The advantage of this method is that the total number
of constraints is only 2n and it is generally applicable to all the types of linear
layers, but its shortcoming is that it might introduce some invalid division
trails, which will lead to an inaccurate model and cause the balance property
of output bits to lose more quickly.

ZR method [11]. For an invertible matrix M ∈ Fs×s2m , Zhang and Rijmen con-
structed a one-to-one relation between a division trail of M and the invert-
ibility of a sub-matrix of M , which is uniquely determined by this division
trail. Specifically, a division trail is valid if and only if the corresponding
sub-matrix is invertible. The number of constraints will be m · (2s− 1) when
constructing an MILP model. This method is completely accurate, but it
cannot be applied to non-binary and non-invertible matrices as well as large
matrices because of the huge scale of constraints.

1 https://www.gurobi.com/
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HW method [12]. Inspired by the ZR method, Hu et al. noticed that a ma-
trix M ∈ Fn×n2 is invertible if and only if there is a matrix M ′ ∈ Fn×n2

such that M ×M ′ equals to an identity matrix. Thus, they introduced an
auxiliary matrix and constrained the multiplication of this auxiliary matrix
and the original matrix to be an identity matrix. If it is a solution, then the
corresponding division trail is valid. This method is as accurate as the ZR
method and is not limited by the invertibility of M . Note that the number of
constraints is n2, and it contains 4-degree constraints, thus it is only solvable
for SMT/SAT solvers. In addition, when the scale of M is large, the model
will be quite heavy, which may cause the infeasibility to solvers.

Recently, Elsheikh and Youssef [13] (ACISP 2021) proposed a method to
optimize the precision of the BDP propagation of linear layers, which is
based on the ZR method. In short, for a given input DP of linear layers,
this method aims to search for the corresponding output DP such that the
derived sub-matrix has full rank. Therefore, the first step is to determine the
input DP and this process will take a lot of precomputations. The precompu-
tations are time-consuming and hardly practical with the round increasing
because of the huge amount of input DP. Thus, the authors in [13] only suc-
ceed in applying this technique to the first round. For more details, please
refer to [13]. However, the above three methods and our method are all gen-
eral descriptions of linear layers, without considering the specific input DP
of linear layers.

1.1 Our Contributions

As mentioned above, the off-the-shelf methods to characterize the BDP propaga-
tion of complex linear layers have their advantages and limitations. In brief, the
S method is applicable to various linear layers but not accurate enough. The ZR
and HW methods are completely accurate, but both of them are limited by the
size of the linear matrix and the former is also limited by the invertibility of the
matrix. Therefore, it is significant to consider how to reach a balance between
the feasibility and the accuracy. In order to find this trade-off, in this paper, we
introduce a new method to achieve a more accurate as well as applicable MILP-
aided description of the BDP propagation of complex linear layers. This method
is inspired by optimizing implementations of matrices, and combines several op-
timizing tools with the existing COPY and XOR modeling rules. Concretely,
given a matrix M ∈ Fn×n2 , we first respectively use three methods Paar [14],
BP [15] and XZ [16] to optimize the implementation of M . Next, we apply both
COPY and XOR modeling rules to constrain each optimized implementation.
Finally, we simultaneously add all the constraints to an MILP model to charac-
terize the BDP propagation of M . In order to intuitively evaluate the number of
constraints, we convert the optimized implementations to the simplest form like
c = a ⊕ b, i.e. one equation contains only one XOR operation (see Equation (2)
in Section 3 ). Then, the upper bound on the number of constraints is 3N, where
N denotes the total number of the linear equations or the XOR operations in the
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optimized implementations. Based on this new method, we propose a framework
as depicted in Algorithm 1 to automatically generate a system of inequalities.
Compared with the S method, it is more accurate since the S method corre-
sponds to the D-xor [25] metric of a linear matrix and this metric is far from
optimal to represent the real cost of implementing a matrix. Thus, modeling
these optimized implementations can effectively decrease the number of invalid
division trails. We present a detailed discussion in Section 3 and prove that
our technique is never worse than the S method. Moreover, it is more applicable
than the ZR method thanks to its non-limitation on the type of matrices and
more lightweight constraints even if it is not completely accurate. It is worth not-
ing that this new method can also be implemented based on SMT/SAT, since
all constraints are linear. Moreover, the number of the generated constraints is
small compared with that of the HW method. As an illustration, we apply this
method to search for integral distinguishers for three block ciphers Midori64 [17],
Skinny64 [18] and LED [19], and compare our results with the previous works
as summarized in Table 1. The related results2 and source codes are available at
https://github.com/hcl21/More-Accurate-BDP-for-LinearLayer.

1.2 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we briefly review
the definition and propagation rules of division property and several heuristics
for implementing linear layers. In Section 3, we introduce the new method
proposed in this paper and give a discussion on the comparison between this
method and the S method. In Section 4, we present applications of our new
method to some block ciphers. We conclude this paper in Section 5.

2 Preliminaries

We first introduce some notations that appear frequently in this paper. Denote
F2 the finite field that contains only two elements (0 and 1) and a ∈ Fn2 an n-bit
vector where ai ∈ F2 denotes the i-th bit of a. The Hamming weight of a ∈ Fn2 ,
denoted by wt(a), is defined as wt(a) = #{i : ai = 1, 0 ≤ i ≤ n− 1}. Let k and
k′ be two vectors in Fn2 , we define k � k′ if ki ≥ k′i for all i, otherwise k � k′.
Bit Product Functions. Let πu : Fn2 → F2 be a function for any u ∈ Fn2 . Let
x ∈ Fn2 be an input of πu , then πu(x ) is defined as

πu(x ) :=

n−1∏
i=0

xui
i .

2 Note that these ciphers’ MixColumns are composed of 16-bit matrix. In order to
exhibit the universality of our method, we also experimented on AES, and we re-
spectively took about 5 and 10 minutes to find 4- and 5-round integral distinguishers
in the key-dependent scenario. Our distinguishers are consistent with that of theHW
method, but we took less time. Unfortunately, we can not obtain these results when
using the S method.

https://github.com/hcl21/More-Accurate-BDP-for-LinearLayer
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Table 1. Comparison of our results with the previous works.

Ciphers #Rounds log2(Data) #Balanced
Bits

Time Ref.

Midori64

5 12 4 - [9]

5 12 7 12s Sect. 4.1

6 45 16 - [9]

6 45 19 140s Sect. 4.1

7 63 64 - [11]

7† 63 64 427s Sect. 4.1

Skinny64

8 56 40 - [9]

8 56 64 < 2s Sect. 4.2

10 60 64 - [11]

10 60 64 5.5s Sect. 4.2

LED

6 52 – ‡ - [9]

6 52 64 15min [12]

6 52 64 < 4h Sect. 4.3

7 63 64 14min [12]

7 63 64 < 5h Sect. 4.3

† In [9], Sun et al. presented the 7-round distinguisher with 61 active input bits
and 16 balanced output bits. We also found this distinguisher and failed to
explore more balanced bits using 61 active bits. For the case of setting 63 active
input bits, [9] does not give the relevant result.

‡ For the data of 252, their model did not return any results.

Algebraic Normal Form. Any Boolean funciton f : Fn2 → F2 can be repre-
sented in its Algebraic Normal Form (ANF) as:

f(x ) =
⊕
u∈Fn

2

afu(

n−1∏
i=0

xui
i ) =

⊕
u∈Fn

2

afuπu(x ),

where afu ∈ F2 is a constant depending on f and u.

2.1 (Bit-Based) Division Property and Its MILP-aided Applications

At EUROCRYPT 2015, division property [5] was proposed by Todo as a gen-
eralization of the integral property, which was originally defined at word level.
Later, the bit-based division property [7] was introduced by Todo and Morii to
investigate the DP at bit level. Note that the BDP is composed of two mem-
bers, two-subset BDP and three-subset BDP. In this paper, we only focus on the
two-subset BDP, thus we straightforwardly use BDP to represent the two-subset
BDP for short. The definition of BDP is presented as follows.
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Definition 1 (Bit-Based Division Property [7]). Let X be a multiset whose
elements belong to Fn2 and K be a set of n-bit vectors whose elements take the
value 0 or 1. Then we call the multiset X has the division property D1n

K if it
fulfills the following conditions for any u ∈ Fn2 :

⊕
x∈X

πu(x) =

{
unknown if there exists k ∈ K s.t. u � k,

0 otherwise.

As a more accurate DP, the BDP can be applied to search for better integral
distinguishers. However, the application of BDP is greatly limited by its high
time and memory complexities, which caused the fact that the BDP was only
applicable to the ciphers with block sizes no more than 32. In order to overcome
this drawback, Xiang et al. [8] first adopted MILP-aided method, which has
shown its great power in cryptanalysis such as [20–23], to automatically search
for integral distinguishers based on BDP. Moreover, the concept of division trail
was introduced to descibe the BDP propagation and the MILP-aided modeling
rules were proposed. In this paper, we devote our attention to modeling linear
layers, thus we only revisit the modeling rules of XOR and COPY operations as
well as the definition of division trail as follows. One can refer to [8, 9] for more
details about the modeling rules of AND operation and Sboxes.

Definition 2 (Division Trail [8]). Let fr denote the round function of an it-
erated block cipher with size of n. Assume the input multiset to the block cipher
has initial division property D1n

K0
, and denote the division property after i-round

propagation through fr by D1n

Ki
. Thus, we have the following chain of division

property propagations:

{k} 4= K0
fr−→ K1

fr−→ Ki
fr−→ · · ·Kr.

Moreover, for any vector k∗i in K∗i , there must exist a vector k∗i−1 in K∗i−1 such
that k∗i−1 can propagate to k∗i by division property propagation rules. Further-
more, for (k0, k1, · · · , kr) ∈ K0 ×K1 × · · · ×Kr, if ki−1 can propagate to ki for
all i ∈ {1, 2, · · · , r} we call (k0, k1, · · · , kr) an r-round division trail.

Proposition 1 (MILP Modeling Rule for COPY [9]). Denote a
COPY−→

(b0, b1, · · · , bm−1) a division trail of COPY function, the following inequalities
are sufficient to describe the division propagation of COPY:{

a− b0 − b1 − · · · − bm−1 = 0,

a, b0, b1, · · · , bm−1 are binaries.

Proposition 2 (MILP Modeling Rule for XOR [9]). Denote (a0, a1, · · · ,
am−1)

XOR−→ b a division trail of XOR function, the following inequalities can
describe the division propagation of XOR:{

a0 + a1 + · · ·+ am−1 − b = 0,

a0, a1, · · · , am−1, b are binaries.
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For the sake of convenience, we name the combined utilization of COPY and
XOR rules as CX rules in this paper. Note that the S method is based on the
CX rules to model the BDP propagation of linear layers.

2.2 Heuristics for Optimizing the Implementations of Linear Layers

The linear layer of a symmetric cipher can be represented as a matrix over F2,
whose implementation is a sequence of XOR operations. Thus, the implementa-
tion cost of a linear layer can be estimated by the number of XOR gates required
to implement the corresponding matrix. In order to find an optimized imple-
mentation of a given matrix with fewer XOR gates, several heuristics have been
proposed, the widely used three of which are introduced in [14–16] respectively.

The Paar algorithm [14]. Taking the matrix over F2 as the input, in each
step, the Paar algorithm chooses a pair of columns from the matrix exhaustively
and calculates the bitwise AND of these two columns, the pair of columns whose
AND reaches the largest Hamming weight will be kept and their bitwise AND
will be added to the matrix as a new column. Before choosing the next two
columns from the new matrix, we should update the matrix by XORing the
selected two columns with the newly added column. The above steps will be
repeated until each row of the matrix has exactly one “1”.

Note that the Paar heuristic is cancellation-free, it means that the operands
of any operation given by this method share no common variables. Each time
the matrix is updated, both the AND of the last column and the updated two
columns will lead to zero vectors. Therefore, these columns will never be selected
as the operands of any operation in the subsequent implementation, i.e., if a =
b ⊕ c is one of the operations, the operations such as a ⊕ b, a⊕ c and b ⊕ c will
never appear afterwards.

The BP algorithm [15]. Given a matrix Mm×n over F2, let wt(Mi) be
the Hamming weight of the i-th row of M , where i ∈ [0,m − 1]. Firstly, the
BP algorithm defines a base S and a vector dist[]. The base S is initialized as
the set of all input bits of M , i.e., S = {x0, x1, · · · , xn−1}. The distance vector
is initialized as dist = {wt(M0) − 1, wt(M1) − 1, · · · , wt(Mm−1) − 1}. Then,
pick two elements S[i] and S[j](i 6= j) from S in each step and treat the XOR
of S[i] and S[j] as a possible element which might be added to S, update the
distance vector as the minimum number of XOR gates required for calculating
the output bits according to the elements from S. Keep the XOR of two elements
selected from base that minimizes the sum of the distance vector and add it to
the base S as a new element. If there are multiple candidates, choose the one
that maximizes the Euclidean Norm of the updated distance vector. Repeat the
above steps until all the elements in dist[ ] are zero.

The XZ algorithm [16]. Inspired by Gauss-Jordan elimination, Xiang
et al . proposed several strategies to decompose an invertible matrix over F2
into a product of a sequence of type-1 and type-3 elementary matrices. A type-1
elementary matrix costs no XOR gate since it is produced by exchanging two
rows/columns of an identity matrix, while a type-3 elementary matrix is pro-
duced by adding a row/column of an identity matrix to another row/column and
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thus costs one XOR gate. Therefore, the matrix decomposition theory builds a
relationship between the cost for implementing an invertible matrix and the
number of type-3 elementary matrices in its decomposition. In order to fur-
ther reduce the number of type-3 elementary matrices, Xiang et al . summarized
seven reduction rules according to the properties of matrix multiplication, which
contribute to saving XOR gates when implementing a matrix. Based on those
observations and combined with the rules of exchanging the order of two adja-
cent elementary matrices presented in [16], Xiang et al . designed a heuristic to
search efficient implementations of a given matrix, and an improved implemen-
tation with fewer XOR gates can be expected by running the algorithm multiple
times.

In this paper, we utilize the source codes to implement those algorithms given
in [16] and [24].

3 BDP Propagations Based on Linear Layer Optimization

In this section, we propose a new method to characterize BDP propagations of
linear layers which is based on the CX rules and the optimized implementations
of matrices. Firstly, we start by introducing an example to intuitively show
the details and effects of the new method. Then we discuss and analyze the
results obtained by using different optimized implementations to model linear
transformation. Finally, we give a theoretical argument to prove that our new
method will never be worse than the S method. This paper mainly considers
three heuristics for optimizing the implementations of matrices, i.e., the Paar,
the BP and the XZ algorithms. For convenience, we use Paar + CX to represent
the combination of the Paar algorithm with the CX rules. Other heuristics
combined with the CX rules are also denoted similarly.

3.1 Construct BDP Propagation Models of Linear Layers

We will begin with a small example listed in the following to illustrate our idea.

Example 1. Let L : (x0, x1, x2, x3)7→(x1⊕x2⊕x3, x0⊕x2⊕x3, x0⊕x1⊕x3, x0⊕
x1 ⊕ x2) be a linear transformation on F42, the corresponding matrix M is as
follows:

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Assuming that (u0, u1, u2, u3)→ (v0, v1, v2, v3) is a division trail through L.
We compute and list all possible division trails of M according to the S method,
ZR method and our technique.

(1) The S method: Based on the theory of the S method to characterize
linear layers, we introduce sk’s as auxiliary binary variables, and the inequalities
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within the model are as follows:

u0 − s0 − s1 − s2 = 0

u1 − s3 − s4 − s5 = 0

u2 − s6 − s7 − s8 = 0

u3 − s9 − s10 − s11 = 0

v0 − s3 − s6 − s9 = 0

v1 − s0 − s7 − s10 = 0

v2 − s1 − s4 − s11 = 0

v3 − s2 − s5 − s8 = 0

. (1)

Among them, ui, vj , sk(0 ≤ i, j ≤ 3, 0 ≤ k ≤ 11) are binary variables. By solving
the above inequalities, the division trails of M can be obtained. The results are
listed in Table 2.

Table 2. Division trails of different method. The trails highlighted in red are invalid.

Input S method Our method ZR method

0x0 0x0 0x0 0x0

0x1 0x2, 0x4, 0x8 0x2, 0x4, 0x8 0x2, 0x4, 0x8

0x2 0x1, 0x4, 0x8 0x1, 0x4, 0x8 0x1, 0x4, 0x8

0x3
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x3, 0x5, 0x6, 0x9,

0xA
0x3, 0x5, 0x6, 0x9,

0xA

0x4 0x1, 0x2, 0x8 0x1, 0x2, 0x8 0x1, 0x2, 0x8

0x5
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x3, 0x5, 0x6, 0x9,

0xC
0x3, 0x5, 0x6, 0x9,

0xC

0x6
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x3, 0x5, 0x6, 0xA,

0xC
0x3, 0x5, 0x6, 0xA,

0xC

0x7 0x7, 0xB, 0xD, 0xE 0xB, 0xD, 0xE 0xB, 0xD, 0xE

0x8 0x1, 0x2, 0x4 0x1, 0x2, 0x4 0x1, 0x2, 0x4

0x9
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x3, 0x5, 0x9, 0xA,

0xC
0x3, 0x5, 0x9, 0xA,

0xC

0xA
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x3, 0x6, 0x9, 0xA,

0xC
0x3, 0x6, 0x9, 0xA,

0xC

0xB 0x7, 0xB, 0xD, 0xE 0x7, 0xD, 0xE 0x7, 0xD, 0xE

0xC
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x5, 0x6, 0x9, 0xA,

0xC
0x5, 0x6, 0x9, 0xA,

0xC

0xD 0x7, 0xB, 0xD, 0xE 0x7, 0xB, 0xE 0x7, 0xB, 0xE

0xE 0x7, 0xB, 0xD, 0xE 0x7, 0xB, 0xD 0x7, 0xB, 0xD

0xF 0xF 0xF 0xF

(2) Our method: Our new technique to model the BDP propagation of M
needs to combine optimized implementations of M with the CX rules. Thus, we
first need to obtain several optimized implementations of M , then use the CX
rules to model its BDP propagations. We detail this process in the following two
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phases.
Implementating Phase: In this phase, we use the algorithms of Paar, BP
and XZ to get the optimized implementations of M . The implementations of M
are listed in Equation (2), where the first set of inequalities denotes the direct
implementation and others are implemented by Paar, BP and XZ, respectively.


y0 = x1 ⊕ x2 ⊕ x3
y1 = x0 ⊕ x2 ⊕ x3
y2 = x0 ⊕ x1 ⊕ x3
y3 = x0 ⊕ x1 ⊕ x2



t0 = x0 ⊕ x1
t1 = x2 ⊕ x3
y0 = x1 ⊕ t1
y1 = x0 ⊕ t1
y2 = x3 ⊕ t0
y3 = x2 ⊕ t0



t0 = x0 ⊕ x2
y3 = x1 ⊕ t0
y1 = x3 ⊕ t0
t1 = y3 ⊕ y1
y2 = x0 ⊕ t1
y0 = t0 ⊕ y2



t0 = x1 ⊕ x2
t1 = x0 ⊕ x3
y1 = x2 ⊕ t1
y0 = x3 ⊕ t0
y2 = t0 ⊕ y1
y3 = t1 ⊕ y0

. (2)

Modeling Phase: We combine the CX rules with the three optimized imple-
mentations of M listed in Equation (2) to model BDP propagations of M . This
process needs to introduce binary auxiliary variables sk’s. These three set of
inequalities contained in Equation (3) are the constraints, which are constructed
according to the Paar, the BP and the XZ implementations respectively. In
order to illustrate the modeling details, we take the Paar as an example. From
the implementation, we know that x0 and x1 both appear twice, thus we need
to copy u0 and u1 to two pieces: s0, s1 and s2, s3, where the variable ui de-
notes the DP of xi. This corresponds to the inequalities u0 − s0 − s1 = 0 and
u1− s2− s3 = 0. The variable s4 denotes the division property of the intermedi-
ate variable t0 and s4 is generated by the XOR operation of the copied DP from
u0 and u1 i.e., s0 and s2, thus s4 − s0 − s2 = 0. Note that t0 is reused in the
5-th and 6-th equations. Thus, we need to copy s4 to two pieces: s12 and s13,
which corresponds to the inequality s4 − s12 − s13 = 0. Other equations can be
modeled in a similar way, so we omit the details.



u0 − s0 − s1 = 0

u1 − s2 − s3 = 0

s2 + s0 − s4 = 0

u2 − s5 − s6 = 0

u3 − s7 − s8 = 0

s7 + s5 − s9 = 0

s9 − s10 − s11 = 0

s10 + s3 − v0 = 0

s11 + s1 − v1 = 0

s4 − s12 − s13 = 0

s12 + s8 − v2 = 0

s13 + s6 − v3 = 0



u0 − s14 − s15 = 0

u2 + s14 − s16 = 0

s16 − s17 − s18 = 0

s19 − v3 − s20 = 0

s17 + u1 − s19 = 0

s18 − s21 − s22 = 0

s23 − v1 − s24 = 0

s21 + u3 − s23 = 0

s24 + s20 − s25 = 0

s26 − v2 − s27 = 0

s25 + s15 − s26 = 0

s27 + s22 − v0 = 0



u2 − s28 − s29 = 0

s28 + u1 − s30 = 0

u3 − s31 − s32 = 0

s31 + u0 − s33 = 0

s33 − s34 − s35 = 0

s36 − v1 − s37 = 0

s34 + s29 − s36 = 0

s30 − s38 − s39 = 0

s40 − v0 − s41 = 0

s38 + s32 − s40 = 0

s37 + s39 − v2 = 0

s41 + s35 − v3 = 0

. (3)
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Among them, ui, vj , sk(0 ≤ i, j ≤ 3, 0 ≤ k ≤ 41) are binary variables. The pro-
cedure for constructing the BDP propagation model of a matrix by our technique
is shown in Algorithm 1.

Algorithm 1 traverses each row of a given matrix implementation and mod-
els it one by one. We explain Algorithm 1 in the following three steps. Step 1:
Traverse the right side of an XOR operation within the matrix implementation
from Line 11 to 31. If there is a variable reused in the subsequent matrix imple-
mentation, its DP needs to be copied and we should model this using the COPY
rule (Proposition 1 in Subsection 2.1). During this process, two new variables
are generated, and the first new variable replaces the first occurrence of the con-
sidered variable’s DP which is copied. Note that if a variable is reused in the
subsequent matrix implementation, its DP may be reused for multiple times. We
do not count the exact occurrences of this variable. We instead add a new term
temp[L[i][j]] = t1 into the dictionary. With this new term, we can make sure
that L[i][j] will be reused in the subsequent matrix implementation and its DP
has been copied earlier. Thus, each time we have to check if L[i][j] is an index
of the dictionary, if this is the case, we should use the copied piece stored in the
dictionary instead. Step 2: Traverse the left side variable of an XOR operation
within the implementation from Line 32 to 40. If this variable is equal to an out-
put bit of the matrix and reused in the subsequent implementation of a matrix,
the variable’s DP is copied. During the COPY operation, this will generate two
new variables, the first new variable replaces the first occurrence’s DP and the
second new variable will be used to model the following occurrence’s DP as in
Step 1. Step 3: Line 41 performs an XOR operation on the updated variables
in each line and adds them into the model. Finally, this algorithm will return an
entire model M from Line 43.

Note that Line 22 and 36 are quite different, this is because if an output bit is
reused, we should use one piece of the COPY operation to represent the output
DP, as the other piece will be used to compute the following output bits.

3.2 Division Trails of Different Models

With the help of automatic solvers, such as Gurobi, Equation (1) and (3) can be
solved and the obtained solutions are division trails. Table 2 and 3 list the divi-
sion trails of various methods, in which the binary representation of division trails
is equivalent to the hexadecimal representation, denoted as: (u0, u1, u2, u3) =

(1, 0, 0, 0)
4
= 0x8.

Comparing the division trails obtained by various methods in Table 2 and 3,
it can be found that the division trails obtained using Paar + CX are less than
those obtained by the S method. For BP + CX and XZ + CX, both methods
can eliminate some (invalid) division trails. However, they will also introduce
some new (invalid) division trails at the same time.

Note that Zhang and Rijmen [11] presented a theoretical technique to de-
termine if a division trail is valid, which computes the determinant of the sub-
matrix defined by the input and the output division property, or equivalently
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Algorithm 1 Construct the MILP model of linear layer BDP propagation

Input: A matrix implementation
Output: The MILP model of BDP propagation M
1: count = 0;
2: L← Read the matrix implementation by row, add the variables of each row to the

corresponding row of the two-dimensional list L from left to right;
3: temp← dict(); //Initialized as an empty dictionary

4: function Get new var( )
5: new var = scount;
6: count = count + 1;
7: return new var;
8: end function
9: M.var ← ui, vi, new var; //ui and vi represent the input and output division

property, new var denotes a newly generated binary variable

10: for i = 0; i < len(L) do
11: for j = 1; j < len(L[i]) do
12: if L[i][j] appears in the k-th(k > i) row of L then
13: if L[i][j] is not an index of temp then
14: t0 = Get new var( );
15: t1 = Get new var( );
16: M.con← L[i][j]′ = t0 + t1; //L[i][j]′ represent the DP of L[i][j]
17: temp[L[i][j]] = t1;
18: L[i][j]′ = t0 ;
19: else
20: t′0 = Get new var( );
21: t′1 = Get new var( );
22: M.con← temp[L[i][j]] = t′0 + t′1;
23: temp[L[i][j]] = t′1;
24: L[i][j]′ = t′0 ;
25: end if
26: else
27: if L[i][j] in an index of temp then
28: L[i][j] = temp[L[i][j]];
29: end if
30: end if
31: end for
32: if L[i][0] = Output then
33: if L[i][0] appears in the k-th(k > i) row of L then
34: t0 = Get new var( );
35: t1 = Get new var( );
36: M.con← t0 = L[i][0]′ + t1; //L[i][0]′ represent the DP of L[i][0]
37: temp[L[i][j]] = t1;
38: temp← Store [L[i][0], t1] in temp;
39: L[i][0]′ = t0;
40: end if
41: end if
42: M.con← L[i][0]′ = L[i][1]′ + L[i][2]′;
43: end for
44: returnM;
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Table 3. Division trails of different implementations. The trails highlighted in red are
invalid.

Input Paar + CX BP + CX XZ + CX

0x0 0x0 0x0 0x0

0x1 0x2, 0x4, 0x8 0x2, 0x4, 0x8 0x1, 0x2, 0x4, 0x8

0x2 0x1, 0x4, 0x8 0x1, 0x2, 0x4, 0x8 0x1, 0x2, 0x4, 0x8

0x3
0x3, 0x5, 0x6, 0x9,

0xA
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x3, 0x5, 0x6, 0x9,

0xA, 0xC

0x4 0x1, 0x2, 0x8 0x1, 0x2, 0x8 0x1, 0x2, 0x8

0x5
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x3, 0x5, 0x6, 0x9,

0xC
0x3, 0x5, 0x6, 0x9,

0xA, 0xC

0x6
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x3, 0x5, 0x6, 0xA,

0xC

0x7 0x7, 0xB, 0xD, 0xE 0xB, 0xD, 0xE 0x7, 0xB, 0xD, 0xE

0x8 0x1, 0x2, 0x4 0x1, 0x2, 0x4, 0x8 0x1, 0x2, 0x4

0x9
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x3, 0x5, 0x9, 0xA,

0xC

0xA
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x3, 0x6, 0x9, 0xA,

0xC
0x3, 0x5, 0x6, 0x9,

0xA, 0xC

0xB 0x7, 0xB, 0xD, 0xE 0x7, 0xD, 0xE 0x7, 0xB, 0xD, 0xE

0xC
0x5, 0x6, 0x9, 0xA,

0xC
0x3, 0x5, 0x6, 0x9,

0xA, 0xC
0x3, 0x5, 0x6, 0x9,

0xA, 0xC

0xD 0x7, 0xB, 0xD, 0xE 0x7, 0xB, 0xD, 0xE 0x7, 0xB, 0xE

0xE 0x7, 0xB, 0xD, 0xE 0x7, 0xB, 0xD 0x7, 0xB, 0xD

0xF 0xF 0xF 0xF

checks if the ANF of the output (defined by the output division property) con-
tains the input monomial (defined by the input division property). Since the S
method corresponds to direct implementation of a matrix, and our technique
uses an optimized implementation, division trails obtained by these methods are
reasonable characterizations of BDP propagations (in the sense that this may
introduce invalid division trails). Thus, we can conclude that all increased di-
vision trails using our method are invalid trails compared with the S method.

Let’s consider the division trail 0x2
M−→ 0x2 obtained by BP + CX. This is a

newly increased trail compared with the S method. The output bit defined by
the output division property is y2, which equals to x0 ⊕ x1 ⊕ x3 according to
the matrix. Obviously, the ANF of this output bit does not contain x2, which

indicates that 0x2
M−→ 0x2 is an invalid trail. However, we can get a deeper look

of this trail. According to the implementation returned by the BP algorithm, y2
is computed as t0 = x0⊕x2, y3 = x1⊕ t0, y1 = x3⊕ t0, t1 = y3⊕ y1, y2 = x0⊕ t1.
The input division property of the matrix is 0x2, thus the division property of
x2 is 1 which can propagate to t0, and this can further propagate to y3 and y1,
which finally propagate to y2. This leads to the increased invalid division trail.

On the other hand, since each set of inequalities as listed in Equation (1)
and (3) can describe the BDP propagation of M in a non-accurate way, all de-
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creased division trails of our method are all invalid trails. Let’s take the division

trail 0xC
M−→ 0x3

4
= (1, 1, 0, 0)

M−→ (0, 0, 1, 1) as an example. According to the
matrix implementation of Equation (2), we can compute the ANF of y2y3, i.e.,
y2y3 = (x0 ⊕ x1 ⊕ x3)(x0 ⊕ x1 ⊕ x2) = x0 ⊕ x0x1 ⊕ x0x2 ⊕ x0x1 ⊕ x1 ⊕ x1x2 ⊕
x0x3⊕x1x3⊕x2x3. It is easy to find that x0x1 appears twice, and the monomial
will be cancelled after the XOR operation, then y2y3 does not include x0x1, so
the input division property (1, 1, 0, 0) can not propagate to the output division
property (0, 0, 1, 1). Therefore, this trail is not a valid propagation according to
Zhang and Rijmen’s theory. Similarly, it can be concluded that all decreased
trails are invalid.

Since Paar + CX method reduces two invalid trails, and both BP + CX and
XZ + CX methods introduce new invalid trails at the same time when reducing
invalid trails. It seems that one should prefer Paar + CX to BP + CX and
XZ + CX. However, Paar + CX method only reduces two trails which is not
satisfactory. In the following, we combine all of the three methods. Note that
each method (Paar,BP,XZ + CX) can describe the BDP propagation of M
(in a non-accurate way), which means all valid trails of M should be contained in
the trail set obtained by each of the three methods. Thus, the intersection of the
three trail sets can characterize the BDP propagation. This has the advantage
that each invalid trail eliminated by one of the methods will not be included
in the intersection, thus eliminated. In practice, the trail set of each method is
obtained by solving the corresponding system of inequalities. Therefore,we can
gather the latter three sets of the inequalities listed in Equation (2) as a whole,
and the solutions of this model are the common solutions of the three methods,
that is, the intersection of the solutions as desired. The column marked with
“Paar + BP + XZ + CX” in Table 2 lists the results of this combination. The
results show that it can reduce a large number of invalid trails, which are fully
identical to results by the ZR method as shown in the 4-th column of Table 2.
In Table 3, we can clearly see that the optimized implementations of different
algorithms can eliminate some different invalid trails. Due to the randomness
of these algorithms and the linearly growth of modeling implementations using
the CX rules, it is possible to use these algorithms multiple times to obtain
multiple matrix implementations, and add the corresponding inequalities into
the model to get a more accurate propagation, which enables us to search for
more available integral properties.

3.3 On the Effectiveness of Our Method

The example discussed in Subsection 3.2 shows that BP + CX or XZ + CX
method would possibly introduce some new invalid trails, even though they could
eliminate several invalid trails at the same time. Thus, we can not conclude that
BP + CX or XZ + CX method is better than the S method. As we discussed

in Subsection 3.2, the division trail 0x2
M−→ 0x2 is a newly introduced invalid

trail, and this happens because two x2’s are involved in the computation of y2
and they will be cancelled by XOR. According to the computation process of the
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Paar algorithm described in Subsection 2.2, this algorithm outputs cancellation-
free implementations. That is, x2 will never appear in the computation of y2.
Moreover, we can find in the example listed in Subsection 3.2 that Paar + CX
method only eliminates invalid trails and no new invalid trails are introduced
compared with the S method. We will discuss in this subsection and conclude
that Paar + CX method is always superior to the S method, i.e., the trail set
computed by Paar + CX method is a subset of the trail set obtained by the S
method.

Let’s first revisit Zhang and Rijmen’s theory and the S method.

Theorem 1 ( [11]). Let M = (ai,j) be the n× n matrix of an invertible linear
transform. Let (u, v) = (u1, · · · , un, v1, · · · , vn) ∈ Fn2 × Fn2 , Iu = {i, ui = 1} =
{i1, · · · , iwt(u)}, Iv = {j, vj = 1} = {j1, · · · , jwt(v)}. Then (u, v) is a valid divi-
sion trail if and only if the order wt(u) sub-matrix whose rows indices are taken
from Iu and columns indices are taken from Iv is invertible.

Let P = (pi,j)n×n and Q = (qi,j)n×n be two n × n matrices, we denote
P&Q = (pi,j × qi,j)n×n an n × n matrix which is the element-wise AND of P
and Q. In the following, we say that P contains Q or Q is contained in P if
P&Q = Q. Given the modeling process of the S method, we can easily deduce
the following proposition.

Proposition 3. Let M = (ai,j) be the n × n matrix of an invertible linear
transform. Let (u, v) = (u1, · · · , un, v1, · · · , vn) ∈ Fn2 × Fn2 , Iu = {i, ui = 1} =
{i1, · · · , iwt(u)}, Iv = {j, vj = 1} = {j1, · · · , jwt(v)}. Then (u, v) is a division
trail of S method if and only if the order wt(u) sub-matrix whose rows indices
are taken from Iu and columns indices are taken from Iv contains a permutation
matrix.

From Theorem 1 and Proposition 3, we can conclude that each valid division
trail (indicated by Theorem 1) is a division trail of the S method, since each
invertible matrix must contain a permutation matrix. Conversely, each division
trail of the S method is not necessarily a valid division trail. Consider a matrix
whose all elements being 1. This matrix is not an invertible matrix, however this
matrix contains the identity matrix as a permutation matrix.

Since the Paar algorithm is cancellation-free, if we compute an output bit
yi from the reverse order of a given implementation, input variables that are not
contained in the ANF of yi will never appear. For example, if we compute y2
from the Paar implementation in Equation (2), y2 = x3 ⊕ t0 = x0 ⊕ x1 ⊕ x3.
Thus, x2 is not involved. However, if we consider y2 from the BP implementation,
y2 = x0⊕t1 = x0⊕y3⊕y1 = x0⊕x1⊕t0⊕x3⊕t0 = x0⊕x1⊕x3⊕x0⊕x2⊕x0⊕x2,
and x2 is involved. Given the cancellation-free property of the Paar algorithm,
it can be easily concluded.

Property 1. If an output bit has the division property of 1, one of the inputs
involved in its ANF has the division property of 1.
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Moreover, assuming that two output bits yi and yj share several common
input bits, and both yi and yj have input division property of 1. According to
Property 1, the division property of yi and yj being 1 will indicate two input
bits taking the division property of 1. Moreover, these two input bits cannot be
the same. This is due to the fact that if any input bit xk is involved in the ANFs
of yi and yj , we should use the COPY operation to split the division property
of xk , and both yi and yj will take a piece of xk. Thus, if yi indicates that xk
has the division property of 1, which means the piece of xk fed to yi has division
property of 1. Thus, the other piece fed to yj will never take the division property
of 1.

Property 2. Different output bits taking the division property of 1 will indicate
different input bits taking the division property of 1.

Given a division trail u → v deduced from Paar + CX method, let w
denote the Hamming weight of u (and v), and i1, · · · , iw(i1 < i2 < · · · <
iw), j1, · · · , jw(j1 < j2 < · · · < jw) denote the indices of u and v whose corre-
sponding coordinates take the division property of 1. According to Property 2,
we can pair xi1 , · · · , xiw and yj1 , · · · , yjw , where xiw and yiw denote the input
and out variables. For the sake of simplicity, assume that xis and yjs form a
pair, which means xis is involved in the ANF of yjs . Thus, M [js][is] = 1 where
M [js][is] denotes the elment in the js-th row and is-th column of M . Let Mv,u

denote the w×w sub-matrix of M as explained in Proposition 3, then this matrix
contains the identity matrix as a permutation matrix, which means each division
trail deduced from Paar + CX method is a division trail of the S method.

Furthermore, we consider the case where the Paar algorithm will generate a
new column with Hamming weight greater than 1, which indicates that there is
at least one xi⊕xj for i < j appears at least twice in the ANFs of y0, · · · , yn−1.
Without loss of generality, assume that x0 ⊕ x1 appears both in y0 and y1, then
the sub-matrix of M with the first, second row and first, second column must
be a 2×2 matrix with all elements being 1. This is not an invertible sub-matrix,
however it contains the 2×2 identity matrix as a permutation matrix. Then the
division trail (1, 1, · · · , 0, 0)−→(1, 1, · · · , 0, 0) can be deduced from the S method
by Proposition 3. But it must not be deduced from Paar + CX method, since
the division property 1 of the intermediate variable t = x0⊕x1 can not be copied
to two pieces both with division property 1, i.e., the division property of y0 and
y1 cannot both be 1. This means that Paar + CX method must eliminate some
invalid division trails which can be deduced from the S method.

Proposition 4. For any given matrix M , division trails deduced from Paar
+ CX method are all division trails of the S method. Moreover, when the Paar
algorithm generates some new columns with Hamming weight greater than 1,
division trails deduced from Paar + CX method must be less than division trails
deduced from the S method.

The above proposition guarantees that Paar + CX method is never worse than
the S method. In other words, Paar + CX method is always likely to eliminate
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the invalid trails and will never introduce newly invalid trails compared with the
S method. Therefore, in a practical application, the more optimal implementa-
tion by Paar algorithm is, the more invalid trails will be eliminated. In addition,
the BP + CX and XZ + CX methods both can eliminate some invalid trails
meanwhile introduce some invalid trails compared with the S method. Thus, it
remains unknown about the times or degrees of the optimization when running
BP or XZ algorithm. In fact, we have experimented on optimizing different
degrees by BP algorithm on LED cipher. It is true that optimizing twice can
obtain the implementation with less XOR gates than only optimizing one time.
Interestingly, the number of trails (valid and invalid) of the better implementa-
tion is large than the worse implementation. However, we do not know which one
can eliminate more invalid trails as well as introduce less invalid trails. Thus, we
only simply consider the combination of the three algorithms, which is absolutely
more accurate than using only one of these algorithms.

4 Applications of Our New Technique

In this section, we show the applications of our technique to Midori64, Skinny64
and LED. Meanwhile, we also have reproduced the results of 4- and 5-round
dependent-key integral distinguishers AES as reported in [12]. Our new technique
mainly focuses on efficiently modeling BDP propagations of the linear layer. By
combining different implementations of the linear layer, we exclude as many
invalid division trails as possible, which may lead to longer distinguishers or
more balanced bits compared with the S method. Table 4 partially lists division
trails of linear layers of these block ciphers by the S method, the ZR method,
HW method and our method. The main results for integral characteristics of
these block ciphers can be found in Table 1.

Table 4. Comparison of the number of division trails by different methods.

Ciphers Hamming
weight†

S method ZR/ HW
method

Our method

Midori64 3 12160 11280 11458

Skinny64 all‡ 1500624 1185921 1185921

LED 3 144053 101938 123195

† The Hamming weight of the input division property. In our experiment,
it can hardly to calculate the number of division trails when we traverse
all the cases of the Hamming weight of the input division property for
Midori64 and LED. Therefore, we only list the division trails that the
Hamming weight of the input division property is 3 for Midori64 and
LED.

‡ Traverse all the cases of the Hamming weight of the input division
property.
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Some special notations will be used in this section. A, B and U indicate
that a certain nibble is active, balanced and unknown, respectively. The little
letters a, b and u indicate the active bit, the balanced bit and the unknown bit
respectively. And we use nR to generally denote an n-round encryption where
R denotes a one-round encryption.

4.1 Application to Midori64

In [9], Sun et al . obtained the longest 7-round integral distinguisher of Midori64.
Although our method deduces distinguishers as long as the current longest one,
but more balanced output bits can be obtained by our method. The 5-, 6- and
7-round integral distinguishers obtained by using the S method are expressed as
follows.


A C C C
C A C C
C C A C
C C C C

 5R
==⇒


uubu U U U
uubu U U U
uubu U U U
uubu U U U



A A C accc
A A A C
C A A A
A C A A

 6R
==⇒


uubu uubu uubu uubu
uubu uubu uubu uubu
uubu uubu uubu uubu
uubu uubu uubu uubu



A A A A
A A A A
A A A A
A A A ccac

 7R
==⇒


uubu uubu uubu uubu
uubu uubu uubu uubu
uubu uubu uubu uubu
uubu uubu uubu uubu


Our 5-, 6- and 7-round integral distinguishers of Midori64 are shown as fol-

lows.
A C C C
C A C C
C C A C
C C C C

 5R
==⇒


uubu U U U
uubu U U U
uubu U U U
B U U U



A A C accc
A A A C
C A A A
A C A A

 6R
==⇒


uubu uubu uubu uubu
uubu uubu uubu uubu
uubu uubu uubu uubu
B uubu uubu uubu



aaca A A A
A A A A
A A A A
A A A A

 7R
==⇒


B B B B
B B B B
B B B B
B B B B


The experimental results show that for 5-round integral distinguisher of Mi-

dori64, we can get 3 more balanced bits than the S method by setting 12 active
bits. For 6-round integral distinguisher, we can also get 3 more balanced bits than
the S method by setting 45 active bits. In addition, our 7-round distinguisher is
consistent with that of the ZR method as in [11].

4.2 Application to Skinny64

By applying our new technique to Skinny64, we get a 10-round integral distin-
guisher by setting 60 active bits. However, as shown in [11], when using the S
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method, only 9-round integral distinguisher can be obtained by setting 63 active
bits. Our 9- and 10-round integral distinguishers are shown as follows.


C A A A
A A A A
A A A A
A A A A

 9R
==⇒


B B B B
B B B B
B B B B
B B B B



C A A A
A A A A
A A A A
A A A A

 10R
===⇒


B B B B
B B B B
B B B B
B B B B


The experimental results show that our method inputs 56 active bits and

obtains 64 balanced bits for the 9-round integral distinguisher, where fewer active
bits are needed compared with the distinguishers obtained by S method. For
10-round integral distinguisher, there are 60 active input bits and 64 balanced
output bits, which is consistent with the result by ZR method in [11].

4.3 Application to LED

In [9], Sun et al . can only search for 6-round integral distinguisher of LED. But
using our method, 7-round integral distinguisher can be got which are consistent
with the result by HW method in [12] and are expressed as follows.

A aaac A A
A A A A
A A A A
A A A A

 7R
==⇒


B B B B
B B B B
B B B B
B B B B


The experimental results show that our method can find one more round

integral distinguisher than the S method, and when setting 63 active input bits,
the distinguisher is same as the result obtained by the HW method.

5 Conclusion

In this paper, we propose a new technique to improve the accuracy of modeling
BDP propagations of complex linear layers, whose core idea is to combine the
optimized implementations of matrices and the modeling rules for COPY and
XOR (CX rules). In particular, we use three heuristics (Paar, BP and XZ) to
obtain optimized implementations of a matrix and then model these implementa-
tions based on the CX rules simultaneously to generate a system of inequalities.
Moreover, we theoretically prove that this new method is always superior to the
S method, which straightforwardly ultilizes the CX rules to model the direct
implementation of a matrix. In order to exhibit the effect of this new method, we
apply it to several block ciphers. As a result, we can obtain longer distinguish-
ers or more balanced bits for Midori64, Skinny64 and LED than that of the S
method. Additionally, what we need emphasize is that our method is not com-
pletely accurate compared with the ZR and HW methods. However, our results
are consistent with that of the ZR and HW methods. Furthermore, our method
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can be implemented based on MILP as well as SMT/SAT, and the constraints
are fully linear, thus simple. In consequence, for modeling the BDP propagation
of linear layers based on very large and complex matrices, our method may be
more practical among these exsiting methods.
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