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Abstract. Let 2p−1 be a Mersenne prime and e a primitive root modulo
2p−1. Let f = xe be a monomial permutation polynomial over the finite
field GF(2p) and let a = (a, f(a), f2(a), . . .) be a sequence over GF(2p)
induced by f , where f t is the t-fold composition of f for t ≥ 1. Given
a basis of GF(2p) over GF(2), say {α0, α1, . . . , αp−1}, if we write each
f t(a), t ≥ 0, in its unique representation as

f t(a) = [f t(a)]0 · α0 + [f t(a)]1 · α1 + · · ·+ [f t(a)]p−1 · αp−1,

where [f t(a)]i ∈ GF(2) for 0 ≤ i ≤ p − 1, then we can simultaneously
obtain p binary sequences [a]0, [a]1, . . . , [a]p−1, where

[a]i = ([a]i, [f(a)]i, [f
2(a)]i, . . .) for 0 ≤ i ≤ p− 1.

In this paper, the periodic property and the shift-equivalence of binary
sequences described above are studied. Let {β0, β1, . . . , βp−1} be the dual
basis of {α0, α1, . . . , αp−1}. It is shown that per ([a]i) = 2p−2 if and only
if βi 6= 1; and per ([a]i) = (2p − 2) /p if and only if βi = 1, where per ([a]i)
is the period of [a]i. Moreover, for 0 ≤ i < j ≤ p − 1, it is shown that

[a]i = Ls[a]j for some positive integer s if and only if βj = β2k

i and
es ≡ 2k mod 2p− 1 for some 0 ≤ k ≤ p− 1, where Ls[a]j is the s-shift of
[a]j . In addition, two special results are given if the basis of GF(2p) over
GF(2) is chosen to be a normal basis.
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1 Introduction

Pseudo-random number generators (PRNGs) are widely used in cryptography,
communication, statistical sampling, Monte Carlo simulation, etc. Different ap-
plications have different requirements for PRNGs. For the application of stream
ciphers, it is usually required that a PRNG should have a sufficiently large period,
as well as a “good” nonlinear structure in order to effectively resist correlation
attacks and algebraic attacks. Nonlinear feedback shift registers (NFSRs) are a
most popular PRNGs for stream cipher design. However, some critical proper-
ties of NFSRs, such as the periodic properties, are still hard to be analyzed. In
this paper, we propose a new PRNG based on permutation polynomials of finite
fields. Our main idea is first to generate sequences with controllable periods by
a suitable permutation polynomial over finite fields, and then to prove that the
induced coordinate sequences also have sufficiently large periods. The nonlinear
iterative approach naturally imply that the induced coordinate sequences are
nonlinear. More importantly, since there are many choices of bases for a finite
field, a variety of coordinate sequences can be derived.

Let GF(2n) be a finite field with 2n elements. A polynomial f ∈ GF(2n)[x] is
called a permutation polynomial of GF(2n) if the associated mapping x 7→ f(x)
from GF(2n) into GF(2n) is a permutation of GF(2n). It is well-known that the
monomial polynomial xe is a permutation polynomial of GF(2n) if and only if
gcd(e, 2n − 1) = 1. Permutation polynomials have wide applications in many
areas of mathematics and engineering such as coding theory, cryptography and
combinatorial designs. We refer the reader to [1, Ch.7], [2, Ch.8], [3] and the
references therein for a detailed exposition of permutation polynomials. We also
refer the reader to [4,5,6] for some constructions of permutation polynomials.
For some recent advances such as complete permutation polynomials over finite
fields, [7,8,9] are recommended.

Let f be a permutation polynomial of GF(2n). Given an initial value a ∈
GF(2n), one can obtain a sequence a = (a, f(a), f2(a), . . .) over GF(2n), where
f t(a) = f(f t−1(a)) for any integer t ≥ 1 and f0(a) = a. For convenience, we
say that a is a sequence induced by f with a being the initial value. If there
exists a positive integer T such that fT (a) = a, then a is called a periodic
sequence. The minimum of such T is called the period of a and is denoted by
per(a). Because of the fact that the associated mapping x 7→ f(x) from GF(2n)
into GF(2n) is a bijection of GF(2n), any sequence induced by f is periodic.

Let {α0, α1, . . . , αn−1} be a basis of GF(2n) over GF(2). Each element a ∈
GF(2n) can be uniquely represented as

a = [a]0 · α0 + [a]1 · α1 + · · ·+ [a]n−1 · αn−1 with [a]i ∈ GF(2) for 0 ≤ i ≤ n− 1,

where [a]i is called the i-th coordinate of a w.r.t. {α0, α1, . . . , αn−1}. Let

a = (a, f(a), f2(a), . . .)

be a sequence over GF(2n). If each f t(a), t ≥ 0, is uniquely represented as

f t(a) = [f t(a)]0 · α0 + [f t(a)]1 · α1 + · · ·+ [f t(a)]n−1 · αn−1,
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where [f t(a)]i ∈ GF(2) for 0 ≤ i ≤ n− 1, then one can simultaneously obtain n
binary sequences [a]0, [a]1, . . . , [a]n−1, where

[a]i = ([a]i, [f(a)]i, [f
2(a)]i, . . .) for 0 ≤ i ≤ n− 1.

For convenience, [a]i is called the i-th coordinate sequence of a w.r.t.
{α0, α1, . . . , αn−1}. The idea of using permutation polynomials to derive coor-
dinate sequences can be traced back to Niederreiter [10], where pseudorandom
vectors are generated by the inversive method. The method of using coordinate
vectors to describe pseudorandom numbers is driven by paralleized simulation
methods. For details of applications in paralleized simulation methods, Ander-
son [11], Bhavsar and Isaac [12], and Eddy [13] are recommended. It is worth
noticing that the period of each coordinate sequence strictly divides the period
of the original sequence. Then a natural problem has arisen—that is, if a is a
sequence induced by a nonlinear permutation polynomial f with period large e-
nough, do all of its coordinate sequences have period large enough? In particular,
all have the same period as a. If so, these coordinate sequences may be of po-
tential interest to many applications, such as the design of stream ciphers, since
it is a challenging work to design nonlinear sequences with controllable periods.
However, the above problem is of independent interest in theory, regardless of
its potential applications.

In this paper, we focus ourself on the monomial permutation polynomials
over GF(2n). Let f = xe be a monomial permutation polynomial over GF(2n)
and let a = (a, f(a), f2(a), . . .) be a sequence over GF(2n) induced by f . It is easy
to see that the maximum possible period for a is 2n−2. If per (a) = 2n−2, then
a is called an MLM-sequence (maximal length monomial sequence). Firstly, it is
shown that a is an MLM-sequence if and only if 2n−1 is a Mersenne prime and e
is a primitive root modulo 2n−1. Secondly, the periods of coordinate sequences of
an MLM-sequence a are studied. Let [a]0, [a]1, . . . , [a]n−1 be n binary coordinate
sequences of a w.r.t. a given basis {α0, α1, . . . , αn−1} of GF(2n) over GF(2). It is
shown that per ([a]i) = 2n − 2 if and only if βi 6= 1; and per ([a]i) = (2n − 2) /n
if and only if βi = 1, where 1 ≤ i ≤ n and {β0, β1, . . . , βn−1} is the dual basis of
{α0, α1, . . . , αn−1}. In particular, per ([a]0) = per ([a]1) = · · · = per ([a]n−1) =
2n−2 if {α0, α1, . . . , αn−1} is chosen to be a normal basis of GF(2n) over GF(2).
Finally, the shift-equivalence of [a]0, [a]1, . . . , [a]n−1 is further studied. For 0 ≤
i < j ≤ n−1, it is shown that [a]i = Ls[a]j for some positive integer s if and only

if βj = β2k

i and es ≡ 2k mod 2n − 1 for some 0 ≤ k ≤ n− 1, where Ls[a]j is the
s-shift of [a]j . Particularly, if {α0, α1, . . . , αn−1} is chosen to be a normal basis of
GF(2n) over GF(2), then there always exists a positive integer sj = uj(2

n−2)/n
with 1 ≤ uj ≤ n − 1 such that [a]0 = Lsj [a]j . Moreover, s1, ss, . . . , sn−1 run
exactly through the set {(2n − 2)/n, 2(2n − 2)/n, . . . , (n− 1)(2n − 2)/n}.

The rest of this paper is organized as follows. In Sect. 2, we first recall the
definition of dual bases and their basic properties, and then we give a necessary
and sufficient condition for MLM-sequences. In Sect. 3, we study the periodicity
and the shift-equivalence of coordinate sequences derived from MLM-sequences.
Finally, we conclude this paper in Sect. 4.
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2 Preliminaries

2.1 Dual bases

Let n > 1 and let {α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1} be two bases of
GF(2n) over GF(2). Then {α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1} are said to
be dual bases if for 0 ≤ i, j ≤ n− 1 we have

Tr(αiβj) =

{
0 if i 6= j,
1 if i = j,

where Tr(y) = y + y2 + · · ·+ y2
n−1

is the trace function from GF(2n) to GF(2).
It is known that given a basis {α0, α1, . . . , αn−1} of GF(2n) over GF(2), it-
s dual basis {β0, β1, . . . , βn−1} always exists and is uniquely determined by
{α0, α1, . . . , αn−1}. Moreover, for 0 ≤ i ≤ n− 1, it is easy to check that

[y]i = Tr(βiy) for all y ∈ GF(2n), (1)

where [y]i is the i-th coordinate of y w.r.t. {α0, α1, . . . , αn−1}. For more details
of dual bases, we refer to [1].

2.2 Maximal length monomial sequences

Let n be an integer greater than 1 and e a positive integer coprime with 2n −
1. Let f = xe be a monomial permutation polynomial over GF(2n) and a =
(a, f(a), f2(a), . . .) a sequence over GF(2n) induced by f . It is clear that a is
an all-zero sequence with per (a) = 1 if a = 0; and a is an all-one sequence
with per (a) = 1 if a = 1; and a is a periodic sequence with per (a) ≤ 2n − 2 if
a ∈ GF(2n)\{0, 1}.

Definition 1. (MLM-sequences) Let f = xe be a monomial permutation poly-
nomial over GF(2n), where e is a positive integer coprime with 2n − 1. Let a =
(a, f(a), f2(a), . . .) be a sequence over GF(2n) induced by f . If per (a) = 2n − 2,
then a is called a maximal length monomial sequence (called MLM-sequence in
short).

Remark 1. If a /∈ {0, 1}, then f t(a) = ae
t

/∈ {0, 1} for any integer t ≥ 0. There-
fore, a, f(a), f2(a), . . . f2

n−3(a) run exactly through the set GF(2n)\{0, 1} if a
is an MLM-sequence over GF(2n).

We recall that a prime number of the form 2n−1 is called a Mersenne prime.
It is necessary that n is prime if 2n − 1 is a Mersenne prime. We also recall
that a positive integer e coprime to 2n − 1 is called a primitive root modulo
2n − 1, if the multiplicative order of e modulo 2n − 1 (the smallest positive
integer k with ek ≡ 1 mod 2n−1) is equal to ϕ(2n−1), where ϕ(·) is the Euler’s
totient function. There are totally ϕ(ϕ(2n − 1)) primitive roots modulo 2n − 1
for 1 < e < 2n − 1.

Next we will give a necessary and sufficient condition for MLM-sequences.
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Theorem 1. Let f = xe be a monomial permutation polynomial over GF(2n),
where e is a positive integer coprime with 2n − 1. Let a ∈ GF(2n)\{0, 1}. Then
a = (a, f(a), f2(a), . . .) is an MLM-sequence over GF(2n) if and only if 2n − 1
is a Mersenne prime and e is a primitive root modulo 2n − 1.

Proof. (⇐) We note that f t(a) = ae
t

for any integer t ≥ 0. If there exists an

integer 1 ≤ t ≤ 2n − 3 such that f t(a) = a, then ae
t

= a, and so

ae
t−1 = 1. (2)

Since 2n − 1 is a Mersenne prime, every element belongs to GF(2n)\{0, 1} is a
primitive element of GF(2n). It naturally follows that a is a primitive element of
GF(2n). Now (2) implies that et ≡ 1 mod 2n − 1, which is a contradiction since
by assumption e is a primitive root modulo 2n − 1. Therefore,

f t(a) 6= a for 1 ≤ t ≤ 2n − 3,

and so per (a) ≥ 2n − 2. On the other hand, it is obvious that per (a) ≤ 2n − 2.
Altogether, we have shown that per (a) = 2n − 2, or equivalently, that a is an
MLM-sequence over GF(2n).

(⇒) We recall that the nonzero elements of GF(2n) form a cyclic group of
order 2n−1 under multiplication. Let ord(a) denote the order of a. Then ord(a) |
2n − 1. On the other hand, it follows from Remark 1 that a, ae, ae

2

, . . . , ae
2n−3

run exactly through the set GF(2n)\{0, 1}. This implies that ord(a) > 2n − 2.
Now, together with ord(a) | 2n − 1, we get ord(a) = 2n − 1. Since

ae
2n−2

= f2
n−2(a) = a but ae

t

= f t(a) 6= a for 1 ≤ t ≤ 2n − 3, (3)

by applying ord(a) = 2n − 1 to (3) we obtain

e2
n−2 ≡ 1 mod 2n − 1 but et 6= 1 mod 2n − 1 for 1 ≤ t ≤ 2n − 3,

and hence the multiplicative order of e modulo 2n − 1 is equal to 2n − 2. This
happens only if 2n − 1 is a Mersenne prime and e is a primitive root modulo
2n − 1.

3 Properties of coordinate sequences derived from
MLM-sequences

Throughout this section, we always assume that 2p − 1 is a Mersenne prime (p
is, of course, a prime number) and e is a primitive root modulo 2p − 1.

We will study two properties of coordinate sequences derived from MLM-
sequences. Before proceeding, we first give two concrete examples.

Example 1. It can be verified that 25−1 is a Mersenne prime and 11 is a primitive
root modulo 25 − 1. Let GF(25) = GF(2)[x]/(x5 + x3 + 1), where x5 + x3 + 1
is an irreducible polynomial of degree 5 over GF(2). Let α ∈ GF(25) be a root
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of x5 + x3 + 1. Then {1, α, α2, α3, α4} is a polynomial basis of GF(25) over
GF(2). Set f = x11 and a = α. By Theorem 1, a = (a, f(a), f2(a), . . .) is an
MLM-sequence over GF(25) with per (a) = 30. In fact, it can be checked that

a = (α, α3 + α2 + α+ 1, α2 + 1, α3 + α, α4 + α3 + α2 + 1, α4 + α, α4,

α4 + α2 + 1, α4 + α3 + α+ 1, α3 + α2 + α, α3 + 1, α4 + α3 + α2,

α3 + α2, α4 + α2 + α+ 1, α+ 1, α4 + α2, α4 + α3 + α2 + α+ 1, α3, (4)

α2, α2 + α+ 1, α4 + 1, α4 + α2 + α, α4 + α3 + 1, α4 + α3 + α2 + α,

α4 + α3 + α, α3 + α+ 1, α3 + α2 + 1, α2 + α, α4 + α+ 1, α4 + α3, . . .),

and so the 5 coordinate sequences of a w.r.t. {1, α, α2, α3, α4} are as follows:

[a]0 = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, . . .),

[a]1 = (1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, . . .),

[a]2 = (0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, . . .),

[a]3 = (0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, . . .),

[a]4 = (0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, . . .).

It can be seen that

per ([a]0) = 6,per ([a]1) = per ([a]2) = per ([a]3) = per ([a]4) = 30.

Consequently, among the 5 coordinate sequences, only 4 of them attain the
maximum period. It also can be seen that

[a]1 = L18[a]2 and [a]3 = L12[a]4,

where Lkz denotes the k-shift of z (i.e., Lkz = (z(t + k))t≥0 if z = (z(t))t≥0).
This implies that [a]1 and [a]2 (or [a]3 and [a]4) are shift equivalent. However, it
can be checked that [a]1 (or [a]2) and [a]3 (or [a]4) are shift distinct.

Example 2. Let GF(25) and α be as in Example 1. Let β = α3 + 1. Then

β2 = α4+α+1, β4 = α4+α3+α2+α+1, β8 = α4+α3+α2+1, β16 = α4+α3+1,

and so {β, β2, β4, β8, β16} is a normal basis of GF(25) over GF(2). Let a be as
in (4). Then the 5 coordinate sequences of a w.r.t. {β, β2, β4, β8, β16} are as
follows:

[a]0 = (0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, . . .),

[a]1 = (0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, . . .),

[a]2 = (1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, . . .),

[a]3 = (1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, . . .),
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[a]4 = (0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, . . .).

It can be seen that

per ([a]0) = per ([a]1) = per ([a]2) = per ([a]3) = per ([a]4) = 30.

Moreover, any two of [a]0, [a]1, [a]2, [a]3, [a]4 are shift equivalent. In fact, we have

[a]0 = L18[a]1 = L6[a]2 = L24[a]3 = L12[a]4.

Examples 1 and 2 above have shown that the properties of coordinate se-
quences are closely related to the choice of a basis. In the rest of this section,
we will discuss more details. In Subsection 3.1, we will completely determine the
periods of coordinate sequences of MLM-sequences. In particular, a necessary
and sufficient condition is given for coordinate sequences whose periods attain
the maximum. In Subsection 3.2, we will give a necessary and sufficient condition
for coordinate sequences of MLM-sequences who are shift equivalent.

3.1 Periodic properties of the coordinate sequences

Lemma 1. Let f = xe ∈ GF(2p)[x], where e is a primitive root modulo 2p − 1.
Let a = (a, f(a), f2(a), . . .) be an MLM-sequence over GF(2p), and let [a]i, 0 ≤
i ≤ p− 1, be the i-th coordinate sequence of [a] w.r.t. {α0, α1, . . . , αp−1}, where
{α0, α1, . . . , αp−1} is a basis of GF(2p) over GF(2). Suppose {β0, β1, . . . , βp−1}
is the dual basis of {α0, α1, . . . , αp−1}. Then per ([a]i) | T if and only if

Tr
(
βi

(
ye

T

+ y
))

= 0 for all y ∈ GF(2p), (5)

where T is a positive integer.

Proof. It is clear that per ([a]i) | T if and only if[
f t+T (a)

]
i

=
[
f t(a)

]
i

for any integer t ≥ 0,

that is, if and only if[(
ae

t
)eT ]

i

=
[
ae

t
]
i

for any integer t ≥ 0. (6)

Since a, ae, ae
2

, . . . , ae
2p−3

run exactly through the set GF(2p)\{0, 1} by Remark
1, the equality (6) is equivalent to[

ye
T
]
i

= [y]i for all y ∈ GF(2p)\{0, 1}.

Observe that
[
ye

T
]
i

= [y]i naturally holds for y ∈ {0, 1}, and so (6) is also

equivalent to [
ye

T
]
i

= [y]i for all y ∈ GF(2p),
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or equivalently, [
ye

T

+ y
]
i

= 0 for all y ∈ GF(2p). (7)

Combining (6) and (7), we get that per ([a]i) | T if and only if[
ye

T

+ y
]
i

= 0 for all y ∈ GF(2p).

Now (1) already gives the desired result.

Remark 2. Lemma 1 implies that if per ([a]i) = T , then T is the least positive
integer for which the equality (5) holds.

Lemma 2. Let 0 6= β ∈ GF(2p) and 1 ≤ d ≤ 2p − 1. Then Tr
(
β
(
yd + y

))
= 0

for all y ∈ GF(2p) if and only if either d = 1 or β = 1 and d = 2k for some
1 ≤ k ≤ p− 1.

Proof. (⇐) The result is obvious since Tr (β (y + y)) = 0 and Tr
(
y2

k

+ y
)

=

Tr
(
y2

k
)

+ Tr (y) = 0.

(⇒) Let us view y as a variable over GF(2p). Let g(y) be the (unique) remain-
der of Tr

(
β
(
yd + y

))
modulo y2

p

+ y. It is clear that g(y) is a zero polynomial
by assumption. We claim that

d = 2k for some 0 ≤ k ≤ p− 1. (8)

Otherwise, d = 2k1 + · · ·+ 2kw for some 2 ≤ w ≤ p− 1. For convenience, we say
that yd has weight w. Note that the remainder of Tr

(
βyd

)
modulo y2

p

+ y is a
polynomial consisting of p terms, each of which has weight w, while the remainder
of Tr (βy) modulo y2

p

+y is a polynomial consisting of p terms, each of which has
weight 1. Thus the remainder of Tr

(
β
(
yd + y

))
= Tr

(
βyd

)
+ Tr (βy) modulo

y2
p

+ y is a nonzero polynomial, a contradiction. Therefore, we have proven the
claim. If d 6= 1, then d = 2k for some 1 ≤ k ≤ p− 1. Now

0 = Tr
(
β
(
yd + y

))
= Tr

(
β
(
y2

k

+ y
))

= Tr
((
β2p−k

+ β
)
y
)

implies that β2p−k

+ β = 0 since Tr (·) maps GF(2p) onto GF(2), and so β ∈
GF(2p−k). Since by assumption 0 6= β ∈ GF(2p), we have

0 6= β ∈ GF(2p) ∩GF(2p−k) = GF(2),

and hence β = 1. This completes the proof.

With the above two lemmas, we can now completely determine the periods
of coordinate sequences of MLM-sequences. In particular, we can give a neces-
sary and sufficient condition for coordinate sequences whose periods attain the
maximum.
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Theorem 2. Let f = xe ∈ GF(2p)[x], where e is a primitive root modulo 2p−1.
Let a = (a, f(a), f2(a), . . .) be an MLM-sequence over GF(2p), and let [a]i, 0 ≤
i ≤ p− 1, be the i-th coordinate sequence of [a] w.r.t. {α0, α1, . . . , αp−1}, where
{α0, α1, . . . , αp−1} is a basis of GF(2p) over GF(2). Suppose {β0, β1, . . . , βp−1}
is the dual basis of {α0, α1, . . . , αp−1}. Then:

(i) per ([a]i) = 2p − 2 if and only if βi 6= 1; and
(ii) per ([a]i) = (2p − 2) /p if and only if βi = 1.

Proof. We note that y2
p

= y for all y ∈ GF(2p), and so for a given integer T we

have ye
T

= yd for all y ∈ GF(2p), where eT ≡ d mod 2p− 1 with 1 ≤ d ≤ 2p− 2.
Then by applying Lemmas 1 and 2, we get per ([a]i) | T if and only if

eT ≡ 1 mod 2p − 1 or βi = 1 and eT ≡ 2k mod 2p − 1 (9)

for some 1 ≤ k ≤ p− 1. We also note that

e(2
p−2)/p ≡ 2k mod 2p − 1 for some 1 ≤ k ≤ p− 1. (10)

This is because e2
p−2 ≡ 1 mod 2p − 1 and {2, 22, . . . , 2p−1} is exactly the set of

primitive p-th roots of unity (i.e. the roots of xp = 1 except for 1) over GF(2p−1),
the prime field with 2p − 1 elements.

(i) To prove the necessity of (i), suppose, on the contrary, that βi = 1.
If we set T = (2p − 2) /p, then (10) implies that the latter condition of (9)
is satisfied, and so per ([a]i) | (2p − 2) /p, a contradiction. Therefore, we have
βi 6= 1. Conversely, set T = per ([a]i). It is clear that T | 2p − 2. Since by
assumption βi 6= 1, the latter condition of (9) is not satisfied, and so we get
eT ≡ 1 mod 2p − 1. Then the desired result follows from the fact that e is a
primitive root modulo 2p − 1.

(ii) The necessity of (ii) is an immediate consequence of (i). If βi = 1, we
set T = (2p − 2) /p. Then it has been shown in proving the necessity part of (i)
that per ([a]i) | (2p − 2) /p. The equality per ([a]i) = (2p − 2) /p holds simplely
because es 6= 2k mod 2p − 1 for any 1 ≤ k ≤ p− 1 if 1 ≤ s < (2p − 2) /p.

Remark 3. Theorem 2 has shown that the coordinate sequences of MLM-sequences
have desirable periodic properties. In detail, since {β0, β1, . . . , βp−1} is a basis
of GF(2p) over GF(2), there are at least p− 1 elements among β0, β1, . . . , βp−1

who are not equal to 1. It follows immediately that, among [a]0, [a]1, . . . , [a]p−1,
there are at least p−1 coordinate sequences whose periods attain the maximum
2p− 2. Although the period of the remaining one may not attain the maximum,
it still not less than (2p − 2) /p.

In the rest of this subsetion, we will give two further results for two special
types of bases. The first one is for polynomial bases, and the second one is for
normal bases.

Corollary 1. Let f and a be as in Theorem 2. Let [a]i, 0 ≤ i ≤ p−1, be the i-th
coordinate sequence of [a] w.r.t. {1, α, α2, . . . , αp−1}, where {1, α, α2, . . . , αp−1}
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is a polynomial basis of GF(2p) over GF(2). Then per ([a]i) = 2p−2 for 1 ≤ i ≤
p− 1; and

per ([a]0) =

{
(2p − 2) /p if Tr(αj) = 0 for 1 ≤ j ≤ p− 1,
2p − 2 otherwise.

Proof. Let {β0, β1, . . . , βp−1} be the dual basis of {1, α, α2, . . . , αp−1}. It is clear
that βi 6= 1 for 1 ≤ i ≤ p−1, since otherwise there is an integer j ∈ {1, 2, . . . , p−
1} such that βj = 1, and then Tr (βj · 1) = Tr (1) = 1 6= 0, a contradiction to the
fact that {β0, β1, . . . , βp−1} is the dual basis of {1, α, α2, . . . , αp−1}. Therefore,
the first result immediately follows from Theorem 2. To prove the second result,
it suffices to show that

β0 = 1 if and only if Tr(αj) = 0 for 1 ≤ j ≤ p− 1. (11)

The necessity of (11) is obvious from the definition of the dual basis.
Next we will prove the sufficiency part of (11). Since by the definition of the

dual basis, we have

Tr(αjβ0) =

{
1 for j = 0,
0 for 1 ≤ j ≤ p− 1.

Combining it with the condition that Tr(αj) = 0 for 1 ≤ j ≤ p− 1, we get

Tr(αj (β0 − 1)) = 0 for 0 ≤ j ≤ p− 1.

Note that {1, α, α2, . . . , αp−1} is a basis of GF(2p) over GF(2), and so we obtain
the desired result that β0 = 1. This completes the proof.

Corollary 2. Let f and a be as in Theorem 2. Let [a]i, 0 ≤ i ≤ p − 1, be the

i-th coordinate sequence of [a] w.r.t. {α, α2, . . . , α2p−1}, where {α, α2, . . . , α2p−1}
is a normal basis of GF(2p) over GF(2). Then

per ([a]i) = 2p − 2 for 0 ≤ i ≤ p− 1.

Proof. Let {β0, β1, . . . , βp−1} be the dual basis of {α, α2, . . . , α2p−1}. By Theo-
rem 2, it suffices to show that βi 6= 1 for 0 ≤ i ≤ p− 1. This result follows from
the fact that {β0, β1, . . . , βp−1} is also a normal basis of GF(2p) over GF(2) (see,
for example, [14]) and that any element of a normal basis is not equal to 1.

3.2 Shift-equivalence of the coordinate sequences

We recall that two periodic sequences a and b are called shift equivalent if a = Lsb
for some nonnegative integer s, where Lsb is the s-shift of b. Otherwise, a and b
are called shift distinct.

Lemma 3. With the notation of Theorem 2, let 0 ≤ i < j ≤ p − 1. Then
[a]i = Ls[a]j for some positive integer s if and only if Tr

(
βiy + βjy

es
)

= 0 for
all y ∈ GF(2p).
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Proof. Firstly, we show that [a]i = Ls[a]j if and only if

Tr (βiy) = Tr
(
βjy

es
)

for all y ∈ GF(2p)\{0, 1}. (12)

We note that a = (a, f(a), f2(a), . . .), where f t(a) = ae
t

for any integer t ≥ 0,
and so by (1) we have

[f t(a)]i = Tr
(
βia

et
)

and [f t+s(a)]j = Tr

(
βj

(
ae

t
)es)

for any integer t ≥ 0.

Therefore, [a]i = Ls[a]j if and only if

Tr
(
βia

et
)

= Tr

(
βj

(
ae

t
)es)

for any integer t ≥ 0,

if and only if

Tr (βiy) = Tr
(
βjy

es
)

for all y ∈ GF(2p)\{0, 1}.

The last equality follows from the fact that a, ae, ae
2

, . . . , ae
2p−3

run exactly

through the set GF(2p)\{0, 1} and ae
2p−2

= a.
For y = 0, the equality holds obviously. Since the trace functions are bal-

anced, the equality must hold for y = 1 too. This completes the proof.

The main result of this subsection can be described explicitly in the following
Theorem.

Theorem 3. With the notation of Theorem 2, let 0 ≤ i < j ≤ p−1. Then [a]i =

Ls[a]j for some positive integer s if and only if βj = β2k

i and es ≡ 2k mod 2p−1
for some 0 ≤ k ≤ p− 1.

Proof. By Lemma 3, it suffices to show that Tr
(
βiy + βjy

es
)

= 0 for all y ∈
GF(2p) if and only if

βj = β2k

i and es ≡ 2k mod 2p − 1 for some 0 ≤ k ≤ p− 1.

If βj = β2k

i and es ≡ 2k mod 2p − 1 for some 0 ≤ k ≤ p − 1, then it is clear
that

Tr
(
βiy + βjy

es
)

= Tr
(
βiy + β2k

i y2
k
)

= Tr
(
βiy + (βiy)

2k
)

= 0

holds for all y ∈ GF(2p).
Conversely, suppose Tr

(
βiy + βjy

es
)

= 0 for all y ∈ GF(2p). An argument
similar to that leading to (8) shows that

es ≡ 2k mod 2p − 1 for some 0 ≤ k ≤ p− 1.
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Consequently,

0 = Tr
(
βiy + βjy

es
)

= Tr
(
βiy + βjy

2k
)

= Tr

(
βiy +

(
βjy

2k
)2p−k)

= Tr
((
βi + β2p−k

j

)
y
)

holds for all y ∈ GF(2p), which immediately implies that βi = β2p−k

j , or, equiv-

alently, that βj = β2k

i .

For normal bases, we have a more concrete result, which is stated in the
following Corollary.

Corollary 3. Let f and a be as in Theorem 2. Let [a]j, 0 ≤ j ≤ p − 1, be the

i-th coordinate sequence of [a] w.r.t. {α, α2, . . . , α2p−1}, where {α, α2, . . . , α2p−1}
is a normal basis of GF(2p) over GF(2). Then for 1 ≤ j ≤ p− 1, there exists an
integer sj = uj(2

p−2)/p with 1 ≤ uj ≤ p−1 such that [a]0 = Lsj [a]j. Moreover,
s1, s2, . . . , sp−1 run exactly through the set

{ (2p − 2) /p, 2 (2p − 2) /p, . . . , (p− 1) (2p − 2) /p}.

Proof. Let {β0, β1, . . . , βp−1} be the dual basis of {α, α2, . . . , α2p−1}. Since the
dual basis of a normal base is also a normal base, it immediately follows that
βj = β2j

0 for 0 ≤ j ≤ p− 1. Furthermore,

e(2
p−2)/p ≡ 2k mod 2p − 1 for some 1 ≤ k ≤ p− 1 (13)

by (10). Let uj be the least nonnegative residue of k−1j modulo p for 1 ≤ j ≤
p − 1, that is uj = k−1j mod p, where k−1 is the inverse of k modulo p. Then
(13) yields

euj(2
p−2)/p ≡ 2ujk ≡ 2j mod 2p − 1. (14)

By setting i = 0 and applying (13) and (14) to Theorem 3, the first desired
result immediately follows. The second desired result follows from the fact that
uj = k−1j (mod p) runs through the set {1, 2, . . . , p − 1} if j runs through
{1, 2, . . . , p− 1}.

4 Conclusions

Binary sequences with desirable properties have important applications in cryp-
tography, communication, Monte Carlo simulation and so on. In this paper, a
class of binary sequences induced by monomial permutation polynomials over
GF(2n) is proposed, and the periodic property and the shift-equivalence of these
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binary sequences are studied. In particularly, a necessary and sufficient condi-
tion is given such that they have the maximum possible period. Moreover, a
necessary and sufficient condition is also given for two sequences who are shift
equivalent. The results of this paper imply that these binary sequences should
be potential interested for several applications such as stream ciphers.

How to generate a pseudo-random sequence with desirable properties is a
classical problem. Although our new proposed PRNG can be viewed as a Galois
NFSR, it should be pointed out that its actual performance cannot be compared
with NFSR since the power operations over finite fields are usually resource-
consuming. How to improve the performance of the proposed PRNG or how to
design other type of PRNGs with desirable properties and performance deserves
further study.
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