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Abstract. The transparency order (denoted by T O) is a useful measure
of the robustness of (n,m)-functions (cryptographic S-boxes as mappings
from GF (2)n to GF (2)m) to multi-bits Differential Power Analysis (D-
PA). An improved version of transparency order (denoted by RT O),
based on the use of cross-correlation coefficients, was also introduced
recently. For the first time, we resolve this open problem which (n,m)-
functions reach the upper bound on T O for odd n (m is a power of 2).
We also investigate the tightness of upper and lower bounds related to
RT O and derive its relationship to main cryptographic characterizations
of (n,m)-functions (such as nonlinearity, the sum-of-square indicator and
algebraic immunity). Finally, concerning S-boxes of size 4×4, the distri-
butions of RT O for all 302 balanced S-boxes (up to affine equivalence)
and 16 equivalence classes of optimal S-boxes are given.

Keywords: (n,m)-functions · Transparency order · Nonlinearity · Auto-
correlation · Cross-correlation.

1 Introduction

S-box is an important non-linear component of cryptographic algorithms. A
careful selection of an S-box is required for ensuring cryptographic robustness of
block (or stream) ciphers, at the same time aiming at efficient implementation.
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In fact, most attacks on symmetric algorithms choose S-box as the target. For
example, in side channel attacks, the secret key (used in the implementation of
symmetric algorithms) can be recovered by analyzing the relationship between
its leakages and the output of an S-box. For the first time, at CRYPTO 1999,
Kocher et al. proposed differential power analysis (DPA) [5]. Then, the security
of S-boxes against DPA was analyzed [1, 10]. At FSE 2005, the transparency
order (T O) based on the auto-correlation coefficients of (n,m)-functions was
proposed by Prouff [10]. According to the definition of T O, (n,m)-functions
with smaller T O are more secure against DPA attacks. At INDOCRYPT 2005,
Carlet obtained a lower bound of T O for highly non-linear (n,m)-functions.
Besides, he also deduced a relationship between T O and the non-linearity for
any (n,m)-function [1]. Later, Fan et al. proposed a fast computation technique
for T O [4]. Then, Picek et al. proposed a genetic algorithm to find some Boolean
functions with better T O values [9]. Mazumdar et al. also focused on the search
of S-boxes with better T O values [7].

Recently, Chakraborty et al. proposed a revised definition of the transparency
order (denoted by RT O) based on the cross-correlation coefficients of (n,m)-
functions (thus not only auto-correlation) in [3]. Consequently, cryptographically
strong S-boxes, apart from satisfying standard cryptographic criteria such as
high algebraic degree, high nonlinearity and good differential properties, also
need to possess relatively large RT O to withstand DPA-like attacks. However,
the analysis in [3] does not provide a thorough treatment regarding the properties
of RT O, thus no tight lower and upper bounds are given and its relation to
other cryptographic criteria was not elaborated. A tight upper bound on RT O
for Boolean functions was established in [13] and it was additionally shown that
the lower bound directly depends on the nonlinearity. The latter result can be
interpreted as a negative trade-off between nonlinearity and RT O, stating that
Boolean functions (as coordinate functions of an (n,m)-function or S-box) with
high nonlinearity also have larger transparency order which is not a desirable
feature in the context of DPA attacks. This also implies that the design of S-
boxes satisfying all the cryptographic criteria including a low RT O becomes
even a more demanding task.

So far, little has been done about addressing the problems related to iden-
tification of (n,m)-functions reaching the bounds on the (revised) transparency
order and even less efforts have been made towards theoretical design of (n,m)-
functions having relatively good transparency order and at the same time satis-
fying other cryptographic criteria. In this article, we address some open problems
related to both definitions of transparency order. Firstly, whereas some instances
of (n,m)-functions reaching the upper bound for even n were given in [10], we
consider the problem of specifying (n,m)-functions achieving the upper bound
on T O (thus the worst possible case concerning DPA) which was left open in
[10] for odd n. We explicitly specify those classes of (n,m)-functions having the
maximum possible T O when m is a power of 2. Secondly, to further elaborate
on the design of robust (n,m)-functions with respect to the RT O indicator [3],
we establish some important connections between RT O and other cryptograph-



On characterization of transparency order for (n,m)-functions 3

ic properties such as the sum-of-square indicator, algebraic immunity (AI), and
nonlinearity of the coordinate functions of (n,m)-functions. In particular, it is
shown that not only the nonlinearity impacts RT O but also the sum-of-square
indicator (as expected) has a direct influence on the resistance to DPA attacks.

Furthermore, the established connection between the algebraic immunity and
transparency order essentially indicates (along with other trade-offs) that the
design of cryptographically secure (n,m)-functions is hard to achieve if the pro-
tection against DPA attacks is taken into account. In this direction, it would
be interesting to establish a similar connection between differential properties of
(n,m)-functions and RT O.

Finally, concerning the upper and lower bounds on RT O, for the first time
their tightness has been confirmed through explicit examples. Moreover, we have
also computed the transparency order for all S-boxes of size 4× 4 (up to affine
equivalence) which gives a complete insight in their properties related to RT O.

This paper is organized as follows. In Section 2, some notations and defi-
nitions related to Boolean functions are given. Besides, we recall two different
notions of transparency order. In Section 3, in connection to the transparency
order introduced by Prouff [10], we provide certain classes of (n,m)-functions
reaching the upper bound of T O. We also specify several connections between
the recently introduced RT O indicator and some main cryptographic parame-
ters, and additionally derive a tight lower and upper bound on RT O. In Section
4, we provide distributions of the transparency order for all S-boxes of size 4× 4
(up to affine equivalence). Finally, some concluding remarks are given in Section
5.

2 Preliminaries

In this section, we give some definitions of Boolean functions and the transparen-
cy order, and introduce some indicators for Boolean functions.

2.1 Definition of Boolean functions

The set of n-variable Boolean functions is denoted by Bn, where any f ∈ Bn

is simply a mapping f : Fn
2 → F2. We denote by ⊕ the addition modulo two

performed in F2 and the vector space Fn
2 . Every Boolean function f ∈ Bn admits

a unique representation called the algebraic normal form (ANF ) which is a
multivariate polynomial over F2:

f(x1, . . . , xn) = a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

ai,jxixj ⊕ · · · ⊕ a1,...,nx1x2 · · ·xn,

where the coefficients a0, ai, ai,j , · · · , a1,...,n ∈ F2. The algebraic degree, deg(f),
is the largest length of the monomial(s) with non-zero coefficients.

Let supp(f) = {(x1, . . . , xn) ∈ Fn
2 | f(x1, . . . , xn) = 1} and wt(f) be the

Hamming weight of f , then wt(f) = |supp(f)|. Furthermore, if wt(f) = 2n−1
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for any f ∈ Bn, then f is said to be balanced. We denote by An the set of affine
functions, that is, deg(f) ≤ 1 in this set.

In this paper, let 0n = {0, . . . , 0︸ ︷︷ ︸
n

} and 1n = {1, . . . , 1︸ ︷︷ ︸
n

} denote the all-zero and

all-one vectors, respectively.

2.2 Some indicators for Boolean functions

Nonlinearity is an important indicator to measure the linearity of Boolean func-
tions. Boolean functions with higher nonlinearity are more resistant to linear
attacks.

Definition 1. Let f ∈ Bn. The nonlinearity of f can be computed using

Nf = 2n−1 − 1

2
max
α∈Fn

2

| F(f ⊕ φα) |,

where F(f ⊕ φα) is the Walsh spectral value of f at point α ∈ Fn
2 computed as:

F(f ⊕ φα) =
∑
x∈Fn

2

(−1)f(x)⊕φα(x),

where φα(x) = α · x = α1x1 ⊕ · · · ⊕ αnxn.

Based on the nonlinearity of f ∈ Bn and the well-known Parseval’s equation, we
know that f is a bent function [11] if Nf = 2n−1 − 2n/2−1 for even n.

The cross-correlation and the auto-correlation functions play an important
role in this paper. For any f, g ∈ Bn, the cross-correlation function is defined as

△f,g(α) =
∑
x∈Fn

2

(−1)f(x)⊕g(x⊕α), α ∈ Fn
2 .

If f = g in the above formula, then the auto-correlation function of f is given
by △f (α) =

∑
x∈Fn

2
(−1)f(x)⊕f(x⊕α), α ∈ Fn

2 .

In order to measure the correlation between two Boolean functions, we recall
the definition of perfectly uncorrelated functions. Two Boolean functions f, g ∈
Bn are said to be perfectly uncorrelated if △f,g(α) = 0, for any α ∈ Fn

2 . Sarkar
et al. [12] proved that F(f ⊕ φα)F(g ⊕ φα) = 0 for any α ∈ Fn

2 if and only
if f and g are perfectly uncorrelated. Later, Pasalic et al. [8] proved that f
and g are disjoint spectra functions (meaning that F(f ⊕ φα) = 0 implies that
F(g ⊕ φα) ̸= 0 or vice versa) if and only if f and g are perfectly uncorrelated.
In order to better prove some conclusions in this paper, we give the definition of
almost perfectly uncorrelated functions.

Definition 2. Let f, g ∈ Bn. f and g are almost perfectly uncorrelated, if △f,g(α) =
0 for any α ∈ Fn∗

2 , where Fn
2
∗ = Fn

2 \ 0n.
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Definition 2 implies that f and g are almost perfectly uncorrelated if f and
g are perfectly uncorrelated.

In order to characterize the so-called global avalanche property, Zhang et al.
[14] introduced an indicator based on the auto-correlation function of a Boolean
function.

Definition 3. Let f ∈ Bn. The global avalanche characteristics (GAC) of f is
given by:

σf =
∑
α∈Fn

2

[△f (α)]
2, △f = max

α∈Fn
2 ,α̸=0n

| △f (α) | .

In 2010, Zhou et al. [16] generalized Definition 3, and presented the notions of the
absolute indicator and the sum-of-squares indicator (defined below respectively)
based on the cross-correlation function for two Boolean functions f, g ∈ Bn:

△f,g = max
α∈Fn

2 ,wt(α)̸=0
| △f,g(α) |, σf,g =

∑
α∈Fn

2

[△f,g(α)]
2.

2.3 Definition of (n,m)-functions and the transparency order

In this paper, we study some properties of the transparent order properties for
(n,m)-functions, therefore we first give the definition of (n,m)-functions.

Let fi ∈ Bn(i = 1, 2, . . . ,m). If F = (f1, . . . , fm) : Fn
2 → Fm

2 , then F is
called an (n,m)-function. An (n,m)-function F is balanced if and only if its
component functions are balanced, meaning that for every nonzero v ∈ Fm

2 the
Boolean function v · F is balanced. Thus, the balanced (n, n)-functions are the
permutations on Fn

2 .
Based on the auto-correlation and cross-correlation functions and the def-

inition of (n,m)-functions, Prouff [10] introduced the concept of transparency
order.

Definition 4. [10] Let F = (f1, . . . , fm) be an (n,m)-function. The transparen-
cy order is defined by:

T O(F ) = max
β∈Fm

2

{| m− 2wt(β) | − 1

22n − 2n

∑
a∈Fn∗

2

∣∣ m∑
i=1

(−1)βi△fi(a)
∣∣}. (1)

Later, Chakraborty et al. [3] revised this definition by using cross-correlation
properties, which then reflects DPA attacks in the Hamming weight model in a
more transparent manner. In order to be consistent with (n,m)-functions in Def-
inition 4 and to address the properties of (n,m)-functions in general, we extend
the original definition of balanced (n,m)-functions to any (n,m)-functions.

Definition 5. [3] Let F = (f1, . . . , fm) be an (n,m)-function. The transparency
order of F is defined by:

RT O(F ) = max
β∈Fm

2

{m− 1

22n − 2n

∑
a∈Fn∗

2

m∑
j=1

∣∣ m∑
i=1

(−1)βi⊕βj△fi,fj (a)
∣∣}. (2)
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The above expression can be further manipulated to give

RT O(F ) = max
β∈Fm

2

{m− 1

22n − 2n

∑
a∈Fn∗

2

m∑
j=1

∣∣ m∑
i=1

△fi⊕βi,fj⊕βj
(a)

∣∣}.
The following quantities, for a given β ∈ Fm

2 , will be proved useful in the sequel:

Γ β
F = m− νF,β . (3)

νF,β =
1

22n − 2n

∑
a∈Fn∗

2

m∑
j=1

|
m∑
i=1

△fi⊕βi,fj⊕βj (a) | . (4)

3 Cryptographic properties of RT O

In this section, we give the existence of (n,m)-functions reaching the upper
bound m on T O, then we provide tight upper and lower bounds on RT O and
deduce some cryptographic properties of RT O.

3.1 The existence of (n,m)-functions reaching the upper bound m
on T O

For the standard definition of transparency order given by Definition 4, Prouff
[10] showed that the maximum value of T O of an (n,m)-function F equals to
m when n is even, and it can be easily achieved if every coordinate function is
a bent function. On the other hand, it was left as an open problem to specify
a class of vectorial (n,m)-functions satisfying T O(F ) = m when n is odd. The
solution to this problem is given below, so that the existence of (n,m)-functions
or S-boxes (for m being a power of two), regardless the parity of n, having the
largest possible transparency order (the worst case regarding the resistance to
DPA) is now asserted.

Theorem 1. Let F = (f1, . . . , fm) be an (n,m)-function.
1) If n is even, then defining fi to be a bent function for all 1 ≤ i ≤ m implies

that T O(F ) = m.
2) For n ≥ 4 and m = 2k, where n ≥ m and k ≥ 2, let g ∈ Bn−k be a bent

function (thus n − k is even). Define F = (f1, . . . , fm) through its coordinate
functions given by,

fi(x, y) = g(x)⊕ ωi · y, x ∈ Fn−k
2 , y ∈ Fk

2 ,

where ωi ∈ Fk
2 for 1 ≤ i ≤ m = 2k and ωi ̸= ωj when i ̸= j. Then, T O(F ) = m.

Proof. 1) This result is proved in [10].
2) For any ωi, γ ∈ Fk

2 and α ∈ Fn−k
2 , we compute the auto-correlation of fi as:

△fi(α, γ) =
∑

x∈Fn−k
2 ,y∈Fk

2

(−1)fi(x,y)⊕fi(x⊕α,y⊕γ)
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=
∑

x∈Fn−k
2 ,y∈Fk

2

(−1)g(x)⊕ωi·y⊕g(x⊕α)⊕ωi·(y⊕γ)

=
∑
y∈Fk

2

(−1)ωi·y⊕ωi·(y⊕γ)
∑

x∈Fn−k
2

(−1)g(x)⊕g(x⊕α)

= 2k(−1)ωi·γ
∑

x∈Fn−k
2

(−1)g(x)⊕g(x⊕α)

=

{
2n(−1)ωi·γ , α = 0n−k;
0, α ̸= 0n−k.

For β = (β1, . . . , βm) ∈ Fm
2 , we can express T O(F ) as:

T O(F ) = max
β∈Fm

2

{| m− 2wt(β) | − 1

22n − 2n

∑
a=(α,γ)∈Fn∗

2

∣∣ m∑
i=1

△fi⊕βi(a)
∣∣}

= max
β∈Fm

2

{
∣∣m− 2wt(β) | − 2n

22n − 2n

∑
γ∈Fk∗

2

| (−1)ω1·γ⊕β1 + · · ·+

(−1)ωm·γ⊕βm
∣∣}

= max
β∈Fm

2

{
∣∣m− 2wt(β) | − 2n

22n − 2n

∑
γ∈Fk∗

2

|
m∑
i=1

(−1)ωi·γ⊕βi
∣∣}. (5)

When wt(β) = m or wt(β) = 0, then

T O(F ) = max
β∈Fm

2

{m− 2n

22n − 2n

∑
γ∈Fk∗

2

|
m∑
i=1

(−1)ωi·γ |}.

Noting that
∑m

i=1(−1)ωi·γ = 0, for γ ∈ Fk∗
2 , we obtain

T O(F ) = max
β∈Fm

2

{m− 0} = m.�

Example 1 Let F = (f1, . . . , f4) be an (n, 4) function whose coordinate func-
tions are defined as:

f1(x, y1, y2) = g(x)⊕ y1 ⊕ y2, f2(x, y1, y2) = g(x)⊕ y1,

f3(x, y1, y2) = g(x)⊕ y2, f4(x, y1, y2) = g(x),

where g is a bent (n − 2)-variable function and n is even. Then T O(F ) = 4,
which can be confirmed with help of the auto-correlation coefficients of fi given
in Table 1, where γ ∈ Fn−2

2 and γ1, γ2 ∈ F2.
Then using (5) and the auto-correlation values in Table 1, it can be easily

verified that for β = (1, 1, 1, 1) or β = (0, 0, 0, 0), we have T O(F ) = max
β∈F4

2

{|

4− 2wt(β) | −0} = 4.
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Table 1. Auto-correlation values of the coordinate functions of F in Example 1

α = (γ, γ1, γ2) (0
n−2, 0, 0) (0n−2, 0, 1) (0n−2, 1, 0) (0n−2, 1, 1) else

△f1(α) 2n −2n −2n 2n 0

△f2(α) 2n 2n −2n −2n 0

△f3(α) 2n −2n 2n −2n 0

△f4(α) 2n 2n 2n 2n 0

A similar analysis can be performed for odd n, defining for simplicity two
coordinate functions for (x, y) ∈ Fn−1

2 × F2:

f1(x, y) = g(x)⊕ y, f2(x, y) = g(x),

where g(x) is a bent function so that n− 1 is even. Again, F = (f1, f2) reaches
the upper bound on T O, thus T O(F ) = 2.

Example 1 of Theorem 1 illustrates the specification of (n,m)-function achieving
the upper bound on T O.

Remark 1 There are several observations worth of noticing in connection to
Theorem 1. In the first place, none of these fi(x, y) = g(x) + ωiy is a bent
function and therefore this method differs substantially from the result in [10]. It
can be easily verified that fi and fj are disjoint spectra functions. Furthermore,
when n is odd (which necessarily implies that k is odd) the result of Theorem 1
essentially solves the open problem in [10] of finding (n,m) functions reaching
the upper bound on T O if m is a power of 2. The nonlinearity of the coordinate

functions given by 2n−1 − 1
2 × 2

n−k
2 2k = 2n−1 − 2

n+k
2 −1 is rather high which

confirms its negative impact on T O.

In the following, we perform a detailed theoretical analysis of the revised
transparency order RT O [3]. We first provide sharp and general lower and up-
per bound of RT O for a class of almost perfectly uncorrelated functions and
specify the instances of S-boxes achieving these bounds. In addition, we derive
some useful connections that relate RT O to other cryptographic notions such
as nonlinearity, algebraic immunity and cross-correlation coefficients. A gener-
al conclusion is that attaining a low RT O indicator (thus offering a higher
resistance to side-channel cryptanalysis) induces a certain worsening of other
cryptographic criteria. Therefore, providing an optimal design of cryptographic
S-boxes that possess sufficient robustness to both standard cryptanalytic attacks
as well as to side-channel cryptanalysis appears to be a quite demanding task.

3.2 The upper and lower bounds on RT O(F )

In this section, we give the upper and lower bounds on RT O by using almost
perfectly uncorrelated functions. Based on Definition 5 of the transparency order,
a lower bound on RT O was derived in [3] in terms of the Walsh spectrum of
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the coordinate functions of (n,m)-functions. Before we provide a tight lower and
upper bound on RT O, employing the concept of almost perfectly uncorrelated
functions, we give some simple preparatory results.

Lemma 1. Let F = (f1, . . . , fm) be a balanced (n,m)-function, where x ∈ Fn
2 .

Then, F ⊕β = (f1 ⊕β1, . . . , fm ⊕βm) is also a balanced (n,m)-function for any
β = (β1, . . . , βm) ∈ Fm

2 .

Proof. The fact that F = (f1, . . . , fm) is a balanced vectorial Boolean function,
implies that v · F is a balanced Boolean function for any v ∈ Fn∗

2 and the result
follows. �

Lemma 2. Let F = (f1, . . . , fm) be a balanced (n,m)-function. Then, fi and fj
are almost perfectly (or perfectly) uncorrelated for any 1 ≤ i < j ≤ m if and only
if fi ⊕ βi and fj ⊕ βj are (almost) perfectly uncorrelated for any 1 ≤ i < j ≤ m,
where β = (β1, . . . , βm) ∈ Fm

2 .

Proof. For any β = (β1, . . . , βm) ∈ Fm
2 and α ∈ Fn

2 we have

△fi⊕βi,fj⊕βj (α) =
∑
x∈Fn

2

(−1)fi(x)⊕βi⊕fj(x⊕α)⊕βj

= (−1)βi⊕βj

∑
x∈Fn

2

(−1)fi(x)⊕fj(x⊕α)

= (−1)βi⊕βj△fi,fj (α).

Thus, fi(x)⊕ βi and fj(x) ⊕ βj are (almost) perfectly uncorrelated if and only
if fi(x) and fj(x) are (almost) perfectly uncorrelated for any 1 ≤ i < j ≤ m,
α ∈ Fn

2 and β ∈ Fn
2 . �

Theorem 2. Let F = (f1, . . . , fm) be an (n,m)-function, F : Fn
2 → Fm

2 . If fi
and fj are almost perfectly uncorrelated functions for 1 ≤ i ̸= j ≤ m, then

0 ≤ RT O(F ) ≤ m.

Especially, RT O(F ) = m if and only if △fi(α) = 0 for any α ∈ Fn
2
∗ and

1 ≤ i ≤ m. Also, RT O(F ) = 0 if and only if | △fi(α) |= 2n for any α ∈ Fn
2
∗

and 1 ≤ i ≤ m.

Proof. Since fi and fj are almost perfectly uncorrelated for any 1 ≤ i ̸= j ≤ m,
we have △fi,fj (a) = 0 for any a ∈ Fn∗

2 . Then,

Γ β
F = m− 1

22n − 2n

∑
a∈Fn∗

2

m∑
j=1

∣∣ m∑
i=1

△fi⊕βi,fj⊕βj
(a)

∣∣
= m− 1

22n − 2n

∑
a∈Fn∗

2

m∑
j=1

∣∣△f1⊕β1,fj⊕βj (a) + · · ·

+△fj⊕βj ,fj⊕βj (a) + · · ·+△fm⊕βm,fj⊕βj (a)
∣∣
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= m− 1

22n − 2n

∑
a∈Fn∗

2

m∑
j=1

∣∣△fj⊕βj ,fj⊕βj (a)
∣∣

= m− 1

22n − 2n

∑
a∈Fn∗

2

m∑
j=1

∣∣△fj⊕βj (a)
∣∣

For any fj(x)⊕ βj , with 1 ≤ j ≤ m, we know that 0 ≤| △fj⊕βj (a) |≤ 2n. Thus,

0 ≤ Γ β
F ≤ m, that is, 0 ≤ RT O(F ) ≤ m.

In particular, we have RT O(F ) = m if and only if | △fj⊕βj (a) | = 0, for any
α ∈ Fn

2
∗ and 1 ≤ i ≤ m. Similarly, RT O(F ) = 0 if and only if | △fi(α) |= 2n,

for any α ∈ Fn
2 \ 0n and 1 ≤ i ≤ m. �

Example 2 Let F = (f1, f2) be a (4, 2)-function whose coordinate functions are
bent and given by:

f1(x) = x1x2 ⊕ x3x4, f2(x) = x1x2 ⊕ x3x4 ⊕ 1.

We deduce that △fi(a) = 0 and △fi,fj (a) = 0 for any a ∈ Fn∗
2 . We have

Γ β
F = m− 1

22n − 2n

∑
a∈Fn∗

2

m∑
j=1

|
m∑
i=1

△fi⊕βi,fj⊕βj (a) |= m− 0 = m,

so that RT O(F ) = m = 2.

Example 3 Let F = (f1, . . . , f4) be an (8, 4)-function, thus F : F8
2 → F4

2, with
its coordinate (linear) functions specified as:

f1(x) = x1 ⊕ x2, f2(x) = x3 ⊕ x4, f3(x) = x5 ⊕ x6, f4(x) = x7 ⊕ x8.

It is easily verified that | △fi(a) |= 2n and △fi,fj (a) = 0 for any a ∈ Fn∗
2 ,

where n = 8. Then,

Γ β
F = m− 1

22n − 2n

∑
a∈Fn∗

2

m∑
j=1

|
m∑
i=1

△fi⊕βi,fj⊕βj (a) |= m− m2n(2n − 1)

22n − 2n
= 0,

implying that RT O(F ) = 0.

Example 2 and Example 3 illustrate the specification of (n,m)-function
achieving the upper bound on RT O in Theorem 2, respectively.

Remark 2 If we take f to be bent and let F = (f, 1 ⊕ f), we deduce that
RT O(F ) = 2, thus reaching the upper bound on RT O of (n, 2)-functions when
n is even. This confirms that using bent functions corresponds to the worst case
with respect to DPA, whereas linear S-boxes offer the highest resistance to DPA.
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3.3 Relating RT O to the absolute cross-correlation indicator

An upper bound on RT O can be also stated in terms of the absolute indicator
(computed at zero for particular shifts of input functions) which is then useful
for two purposes. In the first place, employing the fact that for certain classes of
Boolean functions the values of this indicator are known, one can easily specify
certain S-boxes reaching the upper bound. Moreover, a similar reasoning allows
us to also specify S-boxes (of certain size) whose transparency order is provably
smaller than the upper bound.

Lemma 3. [16] For two Boolean functions f, g ∈ Bn, the following holds:∑
α∈Fn

2

△f,g(α) = (2n − 2wt(f))(2n − 2wt(g)).

Using Lemma 3, for (n,m)-functions, one can deduce an upper bound on
RT O(F ) that depends on △fi⊕βi,fj⊕βj (0

n).

Theorem 3. Let F = (f1, . . . , fm) be an (n,m)- function and wt(fi) = 2n−1(1 ≤
i ≤ m). Then

RT O(F ) ≤ m− 1

22n − 2n
∣∣ m∑
j=1

m∑
i=1

[△fi⊕βi,fj⊕βj (0
n)]

∣∣,
where β = (β1, . . . , βm) ∈ Fm

2 .

Proof. Using the inequality
m∑
i=1

| ai |≥|
m∑
i=1

ai | for any ai ∈ R, we have

νF,β =
1

22n − 2n

∑
a∈Fn∗

2

m∑
j=1

∣∣ m∑
i=1

△fi⊕βi,fj⊕βj (a)
∣∣

≥ 1

22n − 2n

∑
a∈Fn∗

2

∣∣ m∑
j=1

m∑
i=1

△fi⊕βi,fj⊕βj (a)
∣∣

≥ 1

22n − 2n
∣∣ ∑
a∈Fn∗

2

m∑
j=1

m∑
i=1

△fi⊕βi,fj⊕βj
(a)

∣∣
=

1

22n − 2n
∣∣ m∑
j=1

m∑
i=1

∑
a∈Fn∗

2

[△fi⊕βi,fj⊕βj (a)]
∣∣

=
1

22n − 2n
∣∣ m∑
j=1

m∑
i=1

[
∑
a∈Fn

2

[△fi⊕βi,fj⊕βj (a)]−△fi⊕βi,fj⊕βj (0
n)]

∣∣.
Since fi is a balanced function for 1 ≤ i ≤ m, by Lemma 3, we have

νF,β ≥ 1

22n − 2n
∣∣ m∑
j=1

m∑
i=1

[[2n − 2wt(fi ⊕ βi)][2
n − 2wt(fj ⊕ βj)]−
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△fi⊕βi,fj⊕βj (0
n)]

∣∣
=

1

22n − 2n
∣∣ m∑
j=1

m∑
i=1

[−△fi⊕βi,fj⊕βj (0
n)]

∣∣
=

1

22n − 2n
∣∣ m∑
j=1

m∑
i=1

[△fi⊕βi,fj⊕βj (0
n)]

∣∣,
which proves the result. �

If fi and fj are perfectly uncorrelated functions for 1 ≤ i ̸= j ≤ m, then
△fi⊕βi,fj⊕βj (a) = 0 for any 1 ≤ i ̸= j ≤ m. From the proof of Theorem 3, we
have

νF,β ≥ 1

22n − 2n
∣∣ m∑
j=1

m∑
i=1

[△fi⊕βi,fj⊕βj (0
n)]

∣∣
=

1

22n − 2n
∣∣ m∑
i=1

[△fi⊕βi,fi⊕βi(0
n)] |

=
m× 2n

22n − 2n

=
m

2n − 1
.

Corollary 1. Let F = (f1, . . . , fm) be an (n,m)-function and wt(fi) = 2n−1(1 ≤
i ≤ m). If the coordinate functions fi and fj are perfectly uncorrelated for
1 ≤ i ̸= j ≤ m, then

RT O(F ) ≤ m− m

2n − 1
.

The following example illustrate the possibility of specifying (n,m)-functions
whose transparency order RT O is smaller than the upper bound.

Example 4 Let F = (f1, f2) be an (n, 2)-function, and define fi as:

f1(x, y1, y2) = g(x)⊕ y1 ⊕ y2, f2(x, y1, y2) = g(x)⊕ y1,

where n is even, x ∈ Fn−2
2 , y1, y2 ∈ F2, g ∈ Bn−2 is a bent function. Then,

T O(F ) = 2 − 6
2n−1 . The distribution of auto-correlation coefficients of fi are

given in Table 2.

Table 2. Distribution of auto-correlation and cross-correlation functions of F (x, y1, y2)

α = (γ, γ1, γ2) (0
n−2, 0, 0) (0n−2, 0, 1) (0n−2, 1, 0) (0n−2, 1, 1) else

△f1(α) 2n −2n −2n 2n 0

△f2(α) 2n 2n −2n −2n 0

△f1,f2(α) 0 0 0 0 0
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Using Table 2, we obtain

Γ β
F = 2− 1

22n − 2n

∑
a∈Fn∗

2

2∑
j=1

∣∣ 2∑
i=1

△fi⊕βi,fj⊕βj (a)
∣∣

= 2− 1

22n − 2n

∑
a∈Fn∗

2

2∑
j=1

∣∣△f1⊕β1,fj⊕βj (a) +△f2⊕β2,fj⊕βj (a)
∣∣

= 2− 1

22n − 2n

∑
a∈Fn∗

2

[
∣∣△f1⊕β1,f1⊕β1(a) +△f2⊕β2,f1⊕β1(a)

∣∣
+
∣∣△f1⊕β1,f2⊕β2(a) +△f2⊕β2,f2⊕β2(a)

∣∣]
= 2− 1

22n − 2n

∑
a∈Fn∗

2

[∣∣△f1⊕β1,f1⊕β1
(a)

∣∣+ ∣∣△f2⊕β2,f2⊕β2
(a)

∣∣]
= 2− 1

22n − 2n

∑
a∈Fn∗

2

[
∣∣(−1)β1⊕β1△f1,f1(a) | +

∣∣(−1)β2⊕β2△f2,f2(a)
∣∣]

= 2− 6× 2n

22n − 2n

= 2− 6

2n − 1
.

Thus, RT O(F ) = 2 − 6
2n−1 < 2 − 2

2n−1 , where the right-hand side value is the
bound in Theorem 3.

On the other hand, again using bent functions in the background, the derived
disjoint spectra Boolean functions easily give rise to S-boxes reaching the upper
bound of Corollary 1 (see Example 5).

Example 5 Let n be an odd and F = (f1, f2) be an (n, 2)-function with fi given
by x ∈ Fn−1

2 , y ∈ F2. If F (x, y) is expressed as:

f1(x, y) = g(x)⊕ y, f2(x, y) = g(x), (x, y) ∈ Fn−1
2 × F2,

where g ∈ Bn−1 is a bent function. Then, based on the fact that f1 and f2 are
disjoint spectra functions (see e.g. [8]), it can be easily verified that RT O(F ) =
2− 2

2n−1 .

3.4 The relationships between RT O and other cryptographic
properties

To design robust S-boxes for cryptographic applications (referring mainly to their
use in block ciphers), not only the transparency order should be moderately low
but also the considered S-box should satisfy other cryptographic criteria such as
good differential properties, low sum-of-square indicator, high nonlinearity, and
high algebraic immunity and degree. Thus, the relationships between RT O and
other cryptographic criteria is quite important. In the first place, the bounds on
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RT O that depend on these quantities might give us a useful insight whether
it is possible at all to design cryptographically robust S-boxes unifying all the
relevant criteria.

The following result describes the relationship between RT O and the sum-
of-square indicator.

Theorem 4. Let F = (f1, . . . , fm) be a balanced (n,m)- function. If fi and fj
are not almost perfectly uncorrelated for 1 ≤ i ̸= j ≤ m, then

RT O(F ) ≥ m− 1

2n

√
m

2n − 1

m∑
j=1

[
m∑
i=1

√
σfiσfj

]1/2

.

Proof. By using the Cauchy’s inequality, for β = (β1, · · · , βm) ∈ Fm
2 we have∑

a∈Fn∗
2

∣∣ m∑
i=1

△fi⊕βi,fj⊕βj (a)
∣∣ ≤ [(2n − 1)

∑
a∈Fn∗

2

(

m∑
i=1

△fi⊕βi,fj⊕βj (a))
2]1/2

= [(2n − 1)
∑
a∈Fn

2

[(

m∑
i=1

△fi⊕βi,fj⊕βj (a))
2

−(

m∑
i=1

△fi⊕βi,fj⊕βj (0
n))2]]1/2

= [(2n − 1)
∑
a∈Fn

2

(

m∑
i=1

△fi⊕βi,fj⊕βj (a))
2]1/2.

Furthermore, we know∑
a∈Fn

2

(
m∑
i=1

△fi⊕βi,fj⊕βj (a))
2 ≤ m

∑
a∈Fn

2

m∑
i=1

[△fi⊕βi,fj⊕βj (a)]
2.

Thus,∑
a∈Fn∗

2

m∑
j=1

∣∣ m∑
i=1

△fi⊕βi,fj⊕βj (a)
∣∣ ≤ m∑

j=1

[m(2n − 1)
∑
a∈Fn

2

m∑
i=1

[△fi⊕βi,fj⊕βj (a)]
2]1/2

=

m∑
j=1

[m(2n − 1)

m∑
i=1

∑
a∈Fn

2

[△fi⊕βi,fj⊕βj (a)]
2]1/2

=
m∑
j=1

[m(2n − 1)
m∑
i=1

σfi⊕βi,fj⊕βj ]
1/2

≤
m∑
j=1

[m(2n − 1)
m∑
i=1

√
σfi⊕βiσfj⊕βj ]

1/2

=

m∑
j=1

[m(2n − 1)

m∑
i=1

√
σfiσfj ]

1/2,
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which gives a lower bound on RT O(F ). �

Theorem 4 gives the relationship between RT O(F ) and σfi(1 ≤ i ≤ m),
implying that the smaller the σfi the larger is RT O(F ). Using the fact that for
any f ∈ Bn, we have σf ≤ 2n[Lf ]

2 [15], where Lfi = max
α∈Fn

2

| F(fi ⊕ φα) |, one

can easily deduce the following result.

Corollary 2. Let F = (f1, . . . , fm) be a balanced (n,m)-function. If fi and fj
are not almost perfectly uncorrelated for 1 ≤ i ̸= j ≤ m, then

RT O(F ) ≥ m−
√

m

2n(2n − 1)

m∑
j=1

[
m∑
i=1

LfiLfj

]1/2

.

Remark 3 Using Theorem 4 and Corollary 2, one may also derive the re-
lationship between RT O(F ) and the nonlinearity of the coordinate functions
Nfi ; alternatively between RT O(F ) and the algebraic immunity AI(fi), where
1 ≤ i ≤ m.

1) The relationship between RT O(F ) and Nfi(1 ≤ i ≤ m).

RT O(F ) ≥ m−
√

m

2n(2n − 1)

m∑
j=1

[
m∑
i=1

(2n − 2Nfi)(2
n − 2Nfj )

]1/2

.

2) The relationship between RT O(F ) and AI(fi)(1 ≤ i ≤ m).

RT O(F ) ≥ m−
√

m

2n(2n − 1)

m∑
j=1


m∑
i=1

2n − 4

AI(fi)−2∑
k=0

(
n− 1

k

)2n − 4

AI(fj)−2∑
l=0

(
n− 1

l

)
1/2

,

which easily follows from the bound Nf ≥ 2
AI(f)−2∑

i=0

(
n−1
i

)
for f ∈ Bn, see [2,

pp. 331].
In other words, the negative impact on RT O is again confirmed, thus the

larger the Nfi (or AI(fi)), the larger is the RT O(F ).

Finally, one can also deduce a lower bound on RT O which uses other cross-
correlation properties of the coordinate functions.

Theorem 5. Let F = (f1, . . . , fm) be a balanced (n,m)-function. If fi and fj
are not almost perfectly uncorrelated for 1 ≤ i ̸= j ≤ m, then

RT O(F ) ≥ m− 1

2n

m∑
j=1

m∑
i=1

(2n −Num△fi,fj
)(2n −NumFfi,fj

),

where Num△fi,fj
=| {u ∈ Fn

2 : △fi,fj (u) = 0} |, NumFfi,fj
=

∣∣{u ∈ Fn
2 :

F(fi ⊕ φu)F(fj ⊕ φu) = 0}
∣∣.
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Proof. From [12], we know

max
a∈Fn

2

△f,g(a) ≤ (2n −Num△f,g
)(2n −NumFf,g

).

Thus,

∑
a∈Fn∗

2

|
m∑
i=1

△fi⊕βi,fj⊕βj (a) | ≤
∑

a∈Fn∗
2

m∑
i=1

| △fi⊕βi,fj⊕βj (a) |

≤ (2n − 1)
m∑
i=1

max
a∈Fn

2

| △fi⊕βi,fj⊕βj (a) |

≤ (2n − 1)

m∑
i=1

(2n −Num△fi,fj
)(2n −NumFfi,fj

)

= (2n − 1)

m∑
i=1

(2n −Num△fi,fj
)(2n −NumFfi,fj

).�

Remark 4 In terms of the above results it is uncertain whether a design of
cryptographic S-boxes satisfying all the relevant criteria (including the resistance
to DPA attacks) is actually possible after all. The problem of giving a theoretical
evidence regarding the existence of S-boxes with overall good properties remains
open however. More specifically, the question is whether the induced trade-offs
are acceptable from the security margins viewpoint or not.

4 RT O of S-boxes of size 4 × 4

For efficient hardware implementation, small sized bijective S-boxes (as confusion
primitives in block ciphers that use substitution permutation framework) are
commonly preferable in practical applications. The number of bijective mappings
F : F4

2 → F4
2, up to affine equivalence (when a cryptographic property remains

invariant under affine transformations; affine equivalent S-boxes share the same
cryptographic properties), was determined. In [3], it was pointed out that RT O
is affine invariant for F ◦ A, where A ∈ An is an affine permutation, and RT O
is not affine invariant for B ◦ F under some affine permutation B ∈ An. The
exact number of equivalence classes of 4 × 4 S-boxes is 302 among which only
10 S-boxes have nonlinearity 4, degree 3 and absolute auto-correlation value
8, which are the optimal values of these parameters for this particular size of
the ambient space. For this reason the authors in [3] only provided the RT O
values for these 10 equivalence classes of S-boxes. On the other hand, in [6], all
optimal 4-bit S-boxes were classified and up to affine equivalence there are only
16 different classes (here ”optimal” means that 16 classes S-boxes satisfy: 1) the
linearity is 8 ; 2) the difference is 8; 3) the algebraic degree is 3), where the term
optimal refers to those S-boxes that achieve the best differential property and
nonlinearity.
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4.1 RT O of 302 affine equivalent representative (4, 4) S-box

We here compute the transparency order of all 302 (representative) S-boxes
of size 4 × 4 and give a somewhat better insight in the behaviour of this pa-
rameter, especially with respect to randomly selected S-boxes. Our simulations
show (see also [17]) that the transparency order is confined within the range 0 ≤
RT O(F ) ≤ 2.767, having a single (affine) S-box, say F , for which RT O(F ) = 0.
We summarize the distribution of transparency order values for (4, 4) S-boxes
in Table 3, omitting the case of affine S-boxes.

Table 3. Distribution of RT O for 302 (4, 4) S-boxes [17]

RT O Number Per(%) RT O Number Per(%)

0.467 1 0.331 2.133 6 1.656

0.800 1 0.331 2.167 2 0.662

1.067 1 0.331 2.200 2 0.662

1.133 1 0.331 2.233 1 0.331

1.267 1 0.331 2.267 6 1.656

1.333 3 0.993 2.300 5 1.656

1.400 1 0.331 2.333 22 7.285

1.533 1 0.331 2.367 15 4.967

1.600 1 0.331 2.400 22 7.285

1.733 2 0.662 2.433 21 6.954

1.800 4 1.325 2.467 30 9.934

1.833 1 0.331 2.500 31 10.265

1.867 5 1.656 2.533 30 9.934

1.900 1 0.331 2.567 26 8.609

1.933 8 2.649 2.600 20 6.623

1.967 3 0.993 2.633 9 2.980

2.000 2 0.662 2.667 7 2.318

2.033 1 0.331 2.700 1 0.331

2.067 3 0.993 2.733 1 0.331

2.100 2 0.662 2.767 1 0.331

Remark 5 The number of affine equivalence classes whose transparency order
lies in the range RT O(4,4) = [2.333, 2.600] equals to 217 = 22 + 15 + 22 + 21 +
30+31+30+26+20, which corresponds to about 71.85% of their total number.
This simply means that for a randomly selected (4, 4) S-box, the probability that
its transparency order is in the range RT O(4,4) is approximately 71.85%, which
is quite high.

4.2 RT O of A ◦ Gi for 16 optimal S-box Gi

From [6], we know that there are 16 different class (denoted by G0, G1, · · · , G15)
in all optimal 4-bit S-boxes up to affine equivalence. Since RT O(S ◦ A) =
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RT O(S) for any (n, n) S-box S and any affine permutation A ∈ An [3], thus,
we only analyse the distribution of RT O(A ◦ Gi)(i = 0, 1, · · · , 15). The num-
ber of affine permutation A ∈ A4 is 20160, thus we calculate 20160 RT O(A ◦
Gi) for every Gi(i = 0, 1, · · · , 15). Because the calculation method for the
distribution of RT O(A ◦ Gi) is similar for any Gi(i = 0, 1, · · · , 15), due to
page limits, here we give the distribution of RT O(A ◦ G15), where G15 =
{0, 1, 2, 13, 4, 7, 15, 6, 8, 14, 12, 11, 9, 3, 10, 5} [6], see Table 4.

Table 4. Distribution of RT O for A ◦G15 S-boxes

Case RT O Number Per(%)

1 2.133 24 0.119

2 2.167 72 0.357

3 2.200 144 0.714

4 2.233 312 1.55

5 2.267 144 0.714

6 2.300 432 2.143

7 2.333 600 2.976

8 2.367 1248 6.19

9 2.400 1848 9.167

10 2.433 2040 10.119

11 2.467 3000 14.881

12 2.500 2616 12.976

13 2.533 2904 14.404

14 2.567 1872 9.286

15 2.600 1296 6.429

16 2.633 672 3.333

17 2.667 360 1.786

18 2.700 288 1.429

19 2.733 144 0.714

20 2.767 48 0.238

21 2.800 24 0.119

22 2.867 48 0.238

23 2.900 24 0.119

– – 20160 100

Remark 6 From Table 4, we can find that there are 23 different value for
RT O(A ◦G15). The range of RT O(A ◦G15) is [2.133, 2.900], but RT O(G15) =
2.500. This shows that some affine permutation A makes RT O(A◦Gi) > RT O(Gi),
certain A make RT O(A ◦ Gi) < RT O(Gi), and it can happen that RT O(A ◦
Gi) = RT O(Gi) for i = 0, 1, · · · , 15. This further implies that RT O is not an
invariant with respect to an affine permutation. This fact is consistent with the
results in [6].
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5 Conclusions

This article further addresses some relevant results related to T O and RT O.
We answer the open problem regarding the existence of (n,m)-functions that
reach the upper bound on T O for odd n, and give tight upper and lower bounds
RT O. Then, we derive its relationship to main cryptographic characterizations
of (n,m)-functions (such as nonlinearity, the sum-of-square indicator and alge-
braic immunity). Finally, the distributions of RT O for 302 4-bit S-boxes and
RT O of A ◦ Gi for 16 optimal S-box Gi are given as theoretical verification.
These results improve the theoretical results for RT O of S-boxes, and lay a the-
oretical foundation for how to construct S-boxes with smaller RT O in the next
step.
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